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ABSTRACT

A unifying approach to the derivation of the class of propor-
tionate normalised least mean square (PNLMS) algorithms
is provided. This is an important class of algorithms where
the two most used algorithms are introduced empirically. It
is shown that it is possible to derive PNLMS algorithms as
a result of an optimisation procedure. This is achieved in a
rigorous way, starting from the standard LMS through to the
PNLMS with the “sparsification” factor in both the numer-
ator and denominator of the weight update. The proposed
approach is generic and also applies to other LMS types of
adaptive algorithms. Simulations on benchmark sparse im-
pulse responses support the approach.

Index Terms— LMS, normalised LMS (NLMS), propor-
tionate NLMS (PNLMS).

1. INTRODUCTION

The least mean square (LMS) family of algorithms are a de
facto standard for linear adaptive filtering [1, 2]. The LMS
algorithm minimises the instantaneous cost functionE(k) =
1
2
e2(k), and is described by [1]

e(k) = d(k) − x
T (k)w(k),

w(k + 1) = w(k) + µ(k)e(k)x(k), (1)

where e(k) is the output error at time instantk, d(k) the
desired signal, andx(k) = [x(k), ..., x(k − N + 1)]T and
w(k) = [w1(k), ..., wN (k)]T are respectively the input signal
and filter coefficient vector for a filter of lengthN . The para-
meterµ is the step–size, which is critical to the performance,
and defines how fast the algorithm is converging towards the
optimal solution

To facilitate the operation in a nonstationary environment
that is, to allow the filter to adapt according to the time vary-
ing statistical nature of the tap input signal, normalised LMS
(NLMS) [1, 2] uses an adaptive step size

η(k) =
µ

‖x(k)‖2
2 + ε

(2)

where‖ · ‖2 is the Euclidean norm. For practical reasons, the
regularisation parameterε is included in order to prevent the
weight update becoming unstable for input vectors compris-
ing of near to zero values which would otherwise result in a
large “learning rate”η(k).

Due to the importance and wide range of practical appli-
cations of the LMS based algorithms, research into modifi-
cations of this class of algorithms has become a key topic in
statistical and adaptive signal processing [2].

1.1. Proportionate NLMS

As sparse systems occur naturally within many real-world ap-
plications (acoustics, seismics, chemical processes), investi-
gations into sparse environments has become an increasingly
large area of research [3, 4]. As both the LMS and NLMS al-
gorithm perform in a suboptimal manner in practical settings,
such as in sparse environments where the impulse response
vector has a number of zero elements, one particular focus is
the development of adaptive filters specifically designed for
such environments.

For operation in sparse environments one such modifica-
tion of the LMS, the proportionate NLMS (PNLMS) algo-
rithm [5] has proved particularly useful. By taking advantage
of the knowledge that the impulse response is sparse PNLMS
develops on the existing NLMS algorithm to give an update
which is proportional relative to the size of the filter coeffi-
cients. This is achieved by introducing a diagonal “tap se-
lection matrix”G(k) within the coefficient update (1), giving
[5]

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

‖x(k)‖2
2

, (3)

where

G(k) = diag[g1(k), . . . , gN (k)]. (4)

The diagonal elementsg1(k), . . . , gN (k) of G(k) define the
“proportional” amounts that each coefficient is updated by,



wheregn(k) are given by

φ̄(k) = 1/N

N
∑

n=1

φn(k),

φn(k) = max {ρmax [δ, ‖w(k)‖∞] , |wn(k)|} ,

gn(k) =
φn(k)

φ̄(k)
n = 1, . . . , N, (5)

The PNLMS algorithm in its original form has been in-
troduced based on empirical evidence and subsequently most
of its variants have also been designed in an ad hoc manner.
Whilst some aspects of this issue have been addressed [6, 7],
it would however, be beneficial if the class of PNLMS algo-
rithms could be unified, as a result of an optimisation proce-
dure. Our aim is to provide a unified approach to the deriva-
tion of the class of PNLMS algorithms. This is achieved
based on the approach from [8], in which the focus is on min-
imisation of thea posteriori errore(k + 1).

2. DERIVATION OF THE CLASS OF PNLMS
ALGORITHMS

Although originally Duttweiler [5] introduced the PNLMS in
the form of (3) it is natural to conduct our analysis starting
from LMS. In the same vein as the Duttweiler result, we shall
re-write the LMS to suit sparse environments, providing us
with a method to derive the class of PNLMS algorithms in a
generic way.

w(k + 1) = w(k) + µG(k)e(k)x(k). (6)

Notice the only difference between LMS (1) and proportion-
ate LMS (6) is the “tap selective” termG(k). This also has a
geometric justification, since for an N-tap LMS the weight
update lives inR

N , and the direction of that update is to-
tally dominated by the largest element of the weight vectorw.
Also note that the optimisation task performed within NLMS
type algorithms, is to actually minimise thea posteriori error
e(k + 1), as opposed to LMS which minimises thea priori
errore(k). To arrive at the PNLMS, following the approach
from [8, 9], perform the Taylor series expansion (TSE) of the
a posteriori instantaneous output errore(k + 1), to give

e(k+1) = e(k) +
N
∑

i=1

∂e(k)

∂wi(k)
∆wi(k)

+

N
∑

i=1

∂e(k)

∂xi(k)
∆xi(k) +

∂e(k)

∂d(k)
∆d(k)+h.o.t. (7)

where h.o.t. denotes the usually neglected (due to the linearity
of the filter) higher order terms of TSE (7). Unlike in the ap-
proach from [8], generally the partial derivatives with respect
to x andd as well as higher order terms in TSE (7), cannot be

neglected. Firstly from (1), we obtain the partial derivatives
in (7) as

∂e(k)

∂wi(k)
= −x(k − i + 1) = −xi(k), i = 1, 2, . . . , N

∂e(k)

∂xj(k)
= −wj(k), j = 1, 2, . . . , N

∂e(k)

∂d(k)
= 1

(8)
Next the update∆wi(k) (6), can be expressed as

∆wi(k) = µe(k)gi(k)xi(k), i = 1, 2, . . . , N (9)

Finally substituting (8) – (9) into (7) to obtain

e(k + 1) = e(k) − µe(k)

(

N
∑

i=1

x2
i (k)gi(k)

)

−

(

N
∑

i=1

wi(k)∆xi(k)

)

+ ∆d(k) + h.o.t. (10)

To find the optimal learning rateη in the minimum mean
squared error (MMSE) sense, differentiatee2(k + 1) with re-
spect toη and set to zero, to yield

∂ 1
2
e2(k + 1)

∂µ
= 0 ⇒ e(k + 1) = 0 (11)

from which we obtain

µopt =
e(k) −

(

∑N

i=1 wi(k)∆xi(k)
)

+ ∆d(k)

e(k)
∑N

i=1 x2
i (k)gi(k)

(12)

This gives an optimal learning rate providing the first order
Taylor series expansion gives a good approximation of thea
posteriori instantaneous output errore(k + 1). Whenever the
values∆xi(k) and∆d(k) can be calculated or are known (as
in the case of off–line training schemes or ensemble learning),
they should be included in the above analysis.

In practice, however, as in the case of on–line linear adap-
tive filters, ∆d(k) cannot be computed, and in addition, the
variation of first order terms associated withwi(k), xi(k),
andd(k) between two successive discrete time instants might
not be important. For simplicity, and using the usual inde-
pendence assumptions1, the PNLMS can be derived from (7),
by neglecting the first order partial derivatives with respect
to x, d and also higher order terms of TSE (7). The original
PNLMS was introduced empirically and so uses the standard
NLMS update which is a good estimate of the optimal step

1Namely that the input signal and filter coefficient vectors are zero
mean, stationary, jointly normal and with finite moments; the succes-
sive increments of tap weights are independent of one another and
the error and input vector sequences are statistically independent of
one another.



size, from (12), to minimise thea posteriori error e(k + 1),
we have2

µopt =
1

xT (k)G(k)x(k)
(13)

Notice that the Proportionate LMS can now be re-written as

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

xT (k)G(k)x(k)
. (14)

which gives us a rigorous derivation of the update in precisely
the form of what is now the standard version of PNLMS [6,
10].

3. SIMULATIONS

To illustrate the performance of the algorithms, the LMS and
NLMS were compared with the PLMS and PNLMS in both
sparse and nonsparse environments. Learning curves were
produced using the normalised misalignment in dB, given by
10 log10 ‖wopt −w‖2

2/‖wopt‖
2
2, averaged over 100 indepen-

dent trials, wherewopt = [w1 opt, ..., wn opt] is the optimal
filter coefficient vector. For the proportionate algorithms, the
parametersρ andδ were set to the recommended values of
ρ = 5/N andδ = 0.01 [5] and for NLMS-type algorithms
ε = 0.01. The actual sparse systems employed were the
benchmark systems analysed in [11].

Figure 1 shows the performance of the algorithms for a
sparse filter of length 10 andµ = 0.1. Figure 1(a) shows the
performance in a sparse environment, although all the filters
have a similar convergence rate, the NLMS-type algorithms
have approximately 5-dB smaller misalignment. In a non-
sparse environment, Fig 1(b) NLMS-type algorithms still of-
fer an improvement in misalignment this time over 10-dB but
this time with a slower convergence rate. The simulation was
then repeated on a filter of length 100, withµ = 0.01 for the
LMS-type algorithms andµ = 0.5 for the NLMS-type algo-
rithms. In this case, in the sparse environment, Fig. 2(a), the
proportionate algorithms offer a faster convergence rate,with
the NLMS-type algorithms again giving approximately 5-dB
improvement in misalignment, meaning the PNLMS which
combines both the faster convergence of the proportionate al-
gorithms and the smaller misalignment of the NLMS-type al-
gorithms offers the best solution. For the nonsparse environ-
ment, Fig. 2(b), the proportionate algorithms have a consider-
ably slower speed of convergence with again the NLMS-type
algorithms offering the smaller misalignment. In these cases
there is little difference between the original PNLMS and the
updated version with the proportionate matrix in the denom-
inator, but it is known that although this algorithm performs
well in many situations can become unstable for impulsive
excitation signals [6].

2We shall ignore the trivial solutione(k) = 0.
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Fig. 1. Performance comparison of the algorithms for N=10

4. CONCLUSIONS

We have provided a unified approach to the derivation of the
class of PNLMS algorithms, starting from the standard LMS,
and showing that through the minimisation of thea posteriori
error e(k + 1) it is possible to arrive at the PNLMS algo-
rithms.. Furthermore this a generic approach which can be
applied equally well to other types of LMS algorithms. Sim-
ulations on benchmark sparse and nonsparse systems support
the approach, and also highlight the known existing problems
with the performance of the algorithms in some situations.
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