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ABSTRACT

A class of algorithms representing a robust variant of the propor-
tionate normalised least-mean-square (PNLMS) algorithm is pro-
posed. To achieve this, adaptive regularisation is introduced within
the PNLMS update, with the analysis conducted for both individual
and global regularisation factors. The update of the adaptive reg-
ularisation parameter is also made robust, to improve steady state
performance and reduce computational complexity. The proposed
algorithms are better suited not only for operation in nonstationary
environments, but are also less sensitive to changes in the input dy-
namics and the choice of their parameters. Simulations in a sparse
environment show the proposed class of algorithms offer enhanced
performance and increased stability over the standard PNLMS.

Index Terms— LMS, normalised LMS (NLMS), proportionate
NLMS (PNLMS), adaptive regularisation.

1. INTRODUCTION

The least mean square (LMS) family of algorithms are a de facto
standard for linear adaptive filtering [1]. The LMS algorithm is de-
scribed by the following equations

e(k) = d(k) − x
T (k)w(k),

w(k + 1) = w(k) + µ(k)e(k)x(k), (1)

wheree(k) is the output error at time instantk, d(k) the desired
signal,µ the step size, andx(k) = [x(k), ..., x(k − N + 1)]T and
w(k) = [w1(k), ..., wN (k)]T are respectively the input signal and
filter coefficient vector. To allow the filter to adapt according to
the time varying statistical nature of the tap input signal, normalised
LMS (NLMS) uses an adaptive step sizeη(k) = µ/‖x(k)‖2

2 where
‖ · ‖2 is the Euclidean norm. In practice, as input vectors comprising
of near to zero values result in a large “learning rate”η, rendering
the weight update unstable, a positive regularisation parameterε is
introduced to give µ

‖x(k)‖2
2

→
µ

‖x(k)‖2
2 + ε

. (2)

The NLMS algorithm performs in a suboptimal manner in certain
practical settings, such as in sparse environments where the impulse
response vector has a number of zero elements.

As sparse systems occur naturally within many real-world appli-
cations (acoustics, seismics, chemical processes), the development
of adaptive filters specifically designed for sparse environments has
become an increasingly large area of research [2, 3]. One field where
this has received much attention is in network echo cancellers, where
the typical impulse response of the echo path is extremely sparse,
with the proportionate NLMS (PNLMS) algorithm [3] proving par-
ticularly popular. By taking advantage of the knowledge that the
impulse response is sparse PNLMS develops on the existing NLMS
algorithm to give an update which is proportional relative to the size
of the filter coefficients.

Whilst in the short period since the introduction of PNLMS a
number of modifications have been proposed [4, 5], one area that
has received little attention is the stability of the algorithm, which
has led to PNLMS still being constrained to the stability limits of
NLMS [3]. Hence, PNLMS inherits a problem frequently encoun-
tered with NLMS that is not properly regularized, namely that for
an ill-conditioned tap input autocorrelation matrix or for inputs with
coupled modes and processes large dynamics, the filter becomes un-
stable.

To improve the convergence of linear adaptive filters in nonsta-
tionary environments, adaptive step size techniques have been devel-
oped, which include those with a “linear” gradient adaptive learning
rate based on∂E/∂µ [6], and a “nonlinear” gradient adaptive update
based on∂E/∂ε [7], whereE(k)=(1/2)e2(k) is the cost function.
Disadvantages of linear gradient adaptive learning rates are their sen-
sitivity to correlation between input samples and also to the value of
the parameter governing adaptation of the step size. Since PNLMS
is effectively nonlinear, the introduction of a gradient adaptive regu-
larisation parameter would make the existingε–PNLMS algorithms
better suited to operating in real world environments.

To that end we introduce a novel class of algorithms that com-
bine the desirable properties of proportional update of the PNLMS
with an adaptive regularisation parameter in the step size (as de-
scribed by the generalised normalised gradient descent (GNGD) [7]
algorithm), to give faster convergence in a sparse setting along with
improved stability. For clarity, the proposed class of algorithms is
derived based on the original PNLMS [3] but can be straightfor-
wardly applied to any of its variations. The derivation and analy-
sis are supported by comprehensive experimental evidence and fora
wide range of the algorithm parameters.

2. PNLMS AND GNGD ALGORITHMS

The PNLMS algorithm has been recently introduced, with the aim of
improving the performance of NLMS in a sparse environment [3, 5].
This is achieved by introducing a diagonal “tap selection matrix”
G(k) within the coefficient update (1), giving [3]

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

‖x(k)‖2
2 + ε

, (3)

where
G(k) = diag[g1(k), . . . , gN (k)]. (4)

The diagonal elements ofG(k) define the “proportional” amounts
that each coefficient is updated by, where

P
N

n=1 gn(k) = n and
gn(k) are given by

γ̄(k) = 1/N
NX

n=1

γn(k),

γn(k) = max {ρ max [δ, ‖w(k)‖∞] , |wn(k)|} ,

gn(k) =
γn(k)

γ̄(k)
n = 1, . . . , N, (5)



where‖ · ‖∞ is the infinity norm andρ andδ are small constants.
The parametersρ andδ are used to prevent coefficient updates from
stalling,δ at the beginning of the adaptation when all the filter coeffi-
cients are zero andρ when the coefficient in question is significantly
smaller than the largest coefficient in the filter weight vector. The
parameterρ defines “how proportionate” the algorithm is. This way
whenρ → 1 the behaviour of PNLMS approaches that of NLMS.
Issues that remain unsolved with PNLMS are the insight into the
choice not only of an appropriate learning rate but also of the sensi-
tivity of the algorithm to choices of its many other parameters.

2.1. Generalised Normalised Gradient Descent (GNGD) Algo-
rithm

By making the regularisation termε in the step size update gradient
adaptive the GNGD overcomes problems withε-NLMS which occur
due to the need for a fixedε. In addition, the GNGD has been shown
to be robust to the initial parameter settings [7]. Making the regu-
larisation parameterε gradient adaptive gives a coefficient update of

w(k + 1) = w(k) + µ
e(k)x(k)

‖x(k)‖2
2 + ε(k)

, (6)

where the update ofε is defined as
ε(k + 1) = ε(k) − β∇ε(k−1)E(k), (7)

and β is a small constant. Evaluating the gradient∇ε(k−1)E(k)
gives ∂E(k)

∂ε(k − 1)
=

∂E(k)

∂e(k)
·

∂e(k)

∂y(k)
·

∂y(k)

∂w(k)
·

∂w(k)

∂ε(k − 1)

= µ
e(k)e(k − 1)xT (k)x(k − 1)

[‖x(k − 1)‖2
2 + ε(k − 1)]2

. (8)

Substituting (8) into (7) gives theε update

ε(k + 1) = ε(k) − βµ
e(k)e(k − 1)xT (k)x(k − 1)

[‖x(k − 1)‖2
2 + ε(k − 1)]2

. (9)

However, one drawback to GNGD occurs due to the rigorous deriva-
tion of the adaptive regularisation, which results in the filter becom-
ing constantly “alert”, and not settling in steady state.

3. GENERALISED PNLMS AND ITS VARIANTS

As PNLMS and GNGD are both extensions of NLMS and aim to
minimise the same cost function,E = (1/2)e2(k), it is natural
to combine both methods to give an algorithm with improved per-
formance in a sparse environment due to PNLMS and with the ro-
bustness and increased stability of GNGD. To introduce the regu-
larised PNLMS algorithms, following the derivation of GNGD [7],
the regularisation parameter in the denominator of the filter coef-
ficient update is made gradient adaptive. Evaluating the gradient
∇ε(k−1)E(k) gives

∂E(k)

∂ε(k − 1)
= µ

e(k)e(k − 1)xT (k)G(k − 1)x(k − 1)

[‖x(k − 1)‖2
2 + ε(k − 1)]2

. (10)

Taking into account that PNLMS favours some filter coefficients, it
is natural to provide each coefficient with a corresponding regulari-
sation parameterεn(k). Therefore, substituting (10) into (7) we have

εn(k+1)=εn(k)−βµ
e(k)e(k−1)xn(k)gn(k−1)xn(k−1)

[‖x(k − 1)‖2
2 + εn(k − 1)]2

, (11)

which is implemented in the filter coefficient update as

wn(k + 1) = wn(k) + µ
gn(k)e(k)xn(k)

‖x(k)‖2
2 + εn(k)

. (12)

This completes the derivation of the generalised individually adap-
tive PNLMS (GIAPNLMS). Alternatively, the generalised PNLMS

(GPNLMS), with a fixed regularisation parameter across all the ele-
ments of the weight vector can be expressed as

w(k+1)=w(k) + µ
G(k)e(k)x(k)

‖x(k)‖2
2 + ε(k)

,

ε(k+1)=ε(k) − βµ
e(k)e(k−1)G(k−1)xT (k)x(k−1)

[‖x(k − 1)‖2
2 + ε(k − 1)]2

. (13)

The GPNLMS algorithm is by design stable and robust to initial set-
tings of its parameters, however, it also inherits some steady state
stability problems of GNGD.

3.1. GPNLMS with Robust Regularisation

One method of improving problems with the steady state perfor-
mance of adaptive algorithms is to introduce noise into the updates
[8], helping to avoid convergence to local and spurious minima.
We therefore propose to improve the performance of the regularised
PNLMS algorithms by introducing some gradient noise into the up-
dates of the regularisation parameterε. This is achieved based on
normalising the gradient of the cost functionE(k) with respect toε.
Although this approach can be considered an extension of [9], this
extension is not trivial, due to the tap-selective nature of the PNLMS
update (3)-(5). Normalising the gradient (10) gives

∇ε(k−1)E(k)

∇ε(k−1)E(k)




2

= sgn
h
∇ε(k−1)E(k)

i
. (14)

Considering first the individual adaptive regularisation from (11),
this results in the sign regularised GIAPNLMS (SR-GIAPNLMS)
regularisation parameter update given by

εn(k+1)=εn(k)−β sgn

�
e(k)e(k−1)xn(k)gn(k−1)xn(k−1)

[‖x(k − 1)22 + εn(k − 1)]2

�
.

For the global adaptive regularisation parameter (13) this results in
the sign regularised GPNLMS (SR-GPNLMS) update given by

ε(k+1) = ε(k) − β sgn

�
e(k)e(k−1)xT (k)G(k−1)x(k−1)

[‖x(k − 1)22 + ε(k − 1)]2

�
3.1.1. Analysis of SR-GPNLMS and SR-GIAPNLMS

Notice in the above equations that the denominator from (11), which
is the source of much of the computational complexity, can be omit-
ted since it is always positive, giving for SR-GIAPNLMS
εn(k+1) = εn(k) − β sgn [e(k)e(k−1)gn(k−1)xn(k)xn(k−1)]

(15)and for the SR-GPNLMS

ε(k+1)=ε(k)−β sgn
h
e(k)e(k−1)xT (k)G(k−1)x(k−1)

i
. (16)

Before proceeding with the analysis of the proposed algorithms,
we shall compare the performance of the SR-GPNLMS and SR-
GIAPNLMS, averaged over 100 independent trials, for a bench-
mark sparse system [2]. Figure 1 shows that SR-GPNLMS out-
performs SR-GIAPNMS1, which can be explained by the fact that
there is not sufficient information within the individual updates of
εn, which rely on the instantaneous and possibly noisy valuesxn(k)
andxn(k − 1). This becomes particularly noticeable as the algo-
rithms approach steady state, where changes in the sign of the error
vector are also causing the value ofεn to repeatedly fluctuate, lead-
ing to instability. Therefore the following discussion focuses only
on SR-GPNLMS.

From (16), due to the sparse representation, there is also the
G(k−1) term to consider; sinceG(k−1) is always positive it can
be omitted from the update (16) to give

1For continuity, the simulations were conducted for the con-
strained algorithms as will be explained in Section 3.2
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Fig. 1. Performance comparison of SR-GPNLMS(solid) and SR-
GIAPNLMS (dashed) forµ = 0.1 for benchmark system from [2]

ε(k+1) = ε(k)−β sgn
h
e(k)e(k−1)xT (k)x(k−1)

i
. (17)

By following the approach of [9], where by it has been noted that the
sign GNGD algorithm makes use of the gradient vectors∇wE(k) =
−e(k)x(k) and∇wE(k − 1) = −e(k − 1)x(k − 1), and the inner
product of these two vectors is given by

∇T

w
E(k)∇wE(k − 1) = ‖∇wE(k)‖·‖∇wE(k − 1)‖·cos θ,

whereθ is the angle between the vectors. Since‖∇wE(k)‖ and
‖∇wE(k − 1)‖ are always positive, (17) reduces to

ε(k+1)=ε(k)−β sgn
h
∇T

w
E(k)∇wE(k−1)

i
=ε(k)−β sgn [cos θ] .

Attention should be paid to the role of the matrixG(k−1), as this
has an effect on the direction ofx(k−1) and hence the angle between
the two gradients. To cause a change in the sign of theε update, we
need|θ| > π/2, and as the difference betweenx(k) andx(k−1) is
generally small, slight changes to the direction ofx(k−1) caused by
G(k−1) are not significant and the change in sign, and consequent
deviation from the learning curve, is not likely. Therefore, for all
simulations discussed in the following sections, (17) was used as the
ε update.

Notice that, although the SR-GPNLMS has been derived from
the original PNLMS algorithm [3], the result (17) would be exactly
the same had any of its variants been used.

3.2. Convergence and Computational Complexity

The convergence analysis of the proposed algorithms conforms to
the existing analysis of the PNLMS [10]. Due to the adaptive regu-
larisation parameter, we have to introduce one more stability bound,
given by

ε(k) > −
‖x(k)‖2

2

2
.

The convergence and sensitivity analysis of this bound is in corre-
spondence with the analysis of the GNGD [7].

The adaptive regularisation parameter update has two compet-
ing unconstrained optimisation processes, one based on∇wE and
the other on∇εE, for which the convergence speed is generally dif-
ferent, and would benefit from constraints on the allowable values
of their parameters. Indeed, in practice for GPNLMS there was no
need to include a minimum bound onε, but with SR-GPNLMS this
is not expected, due to the simplified (and hence noisy) updates of
ε. Figure 2(a) illustrates the performance of the proposed algorithms
and PNLMS for the benchmark sparse system from [2]. In this case
and due to the unconstrained nature of (17), SR-GPNLMS diverged,
and a lower bound of a lower bound ofεmin =0 had to be introduced
to ensure the stable operation of the algorithm (Fig. 2(b)).

A comparison of computational complexity of the various algo-
rithms considered is listed in Table 1. Notice that SR-GPNLMS does
not result in a significant increase in computational complexity over
PNLMS and offers a considerable reduction over GPNLMS.

Algorithm Multiplications Divisions
NLMS 2N + 3 1
GNGD 2N + 10 2
PNLMS 4N + 3 N + 1
GPNLMS 6N + 8 N + 2
GIAPNLMS 6N + 8 2N +1
SR-GPNLMS 4N + 8 N +1

Table 1. Computational requirements for the NLMS, GNGD,
PNLMS, GPNLMS, GIAPNLMS and SR-GPNLMS

4. SIMULATIONS

To illustrate the performance of the proposed class of adaptively reg-
ularised algorithms, we ran a comprehensive set of simulations in-
cluding 3D graphs of the sensitivity of the algorithms to their para-
meters. Learning curves were produced using the normalised mis-
alignment in dB, given by10 log10 ‖wopt − w‖2

2/‖wopt‖
2
2, aver-

aged over 100 independent trials, wherewopt =[w1 opt, ..., wn opt]
is the optimal filter coefficient vector. For all the algorithms, the pa-
rametersρ andδ were set to the recommended values ofρ = 5/N
andδ=0.01 [3] and for the proposed algorithmsβ=0.1. The actual
sparse system employed was the benchmark system analysed in [2]

The performance of the standard PNLMS was compared with
that of the proposed algorithms for a learning rate ofµ = 0.1, Fig.
2(b) shows that all the algorithms have a similar convergence rate
but with the minimum bound onε of zero in place, the constrained
SR-GPNLMS offers slightly smaller misalignment.
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Fig. 2. Performance comparison of the proposed algorithms with
PNLMS forµ = 0.1 (a) no minimum bound onε (b) εmin =0

To illustrate the behaviour of the algorithms in critical operating
conditions (simulating the effect of close to zero inputs2)), the value
of µ was increased toµ=1.95, at which point PNLMS is on the limit
of stability. As well as comparing the algorithms with the original
PNLMS the commonly used updated version of the form

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

xT (k)G(k)x(k) + ε
, (18)

2Notice from (2) as‖x(k)‖2
2 → 0 thenη(k) → ∞, by makingµ

large we achieve the same effect allowing a comparison of the fixed
and variableε methods



was also implemented. Figure 3 shows that on average GPNLMS
and GIAPNLMS offered approximately a 4-dB improvement in per-
formance over the original algorithm and over 2-dB on the updated
version, but SR-GPNLMS exhibited over 10-dB improvement in
performance over the GPNLMS and GIAPNLMS. The GIAPNLMS,
with individual updates of parameterε offered little improvement
over the global version, therefore, all subsequent simulations were
performed using only GPNLMS and SR-GPNLMS.
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Fig. 3. Performance comparison of the proposed algorithms with
PNLMS forµ = 1.95

The sensitivity of the PNLMS and GPNLMS for a range of pa-
rameter values within the algorithm are shown in Fig. 4. The para-
meterρ was varied between zero and unity, for which the behaviour
of the PNLMS approaches that of the NLMS. Changes inδ were
not investigated, as it is known to only have an effect on the algo-
rithm initially when all filter coefficients are zero. To show how the
PNLMS behaves in extreme circumstances, the value ofµ was var-
ied between zero and three, withµ ∈ [2, 3) being outside the normal
range of stability for the PNLMS. The PNLMS and GPNLMS algo-
rithms exhibited similar performance for0 < µ ≤ 1.8, but beyond
this the difference between the two algorithms is clearly apparent
with the PNLMS becoming extremely unstable.
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Fig. 4. Performance comparison of the standard PNLMS with the
GPNLMS for variations inµ andρ

Figure 5 shows the above experiment repeated for GPNLMS and
SR-GPNLMS. Whilst the behaviour of both algorithms was clearly
still under control it can be seen that for all settings withµ ≤ 2.5,
SR-GPNLMS had similar or better performance than GPNLMS. For
situations withµ > 2.5, GPNLMS showed better stability than SR-
GPNLMS, due to its more rigorous derivation, however the SR-
GPNLMS offers a viable alternative as a trade-off between perfor-
mance and computational complexity (Table 1).

5. CONCLUSIONS

To avoid problems experienced with PNLMS when processing in-
puts with large dynamics and ill conditioned tap input correlation
matrices, a class of algorithms with gradient adaptive regularisation
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Fig. 5. Performance comparison of SR-GPNLMS with GPNLMS
for variations inµ andρ
parameters has been proposed. The GIAPNLMS has been derived
rigorously, as an initial analysis suggested that an individual update
for each filter coefficient was required. In practice the improvement
in performance offered over the global update of the GPNLMS did
not compensate for the extra computational complexity. To over-
come problems incurred in steady state and to reduce computational
complexity, an algorithm based upon a robust adaptive regularisa-
tion parameter has also been derived. Simulations in a sparse sys-
tem identification setting support the analysis and show the proposed
class of algorithms to be stable in a wide range of situations and ro-
bust to parameter initialization.
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