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Why Sparsity?

• In all forms of adaptive filtering knowledge about the nature of the
signal can give a useful insight, providing valuable information in many
different applications
e.g. health conditions (heart rate), radar and many others

• The theory of signals generated by linear systems, (described by
Gaussian distributions or as stationary) are well understood

• All other signals are in some way non– linear, Gaussian, stationary etc.
and are less clearly defined and understood

• Focusing on sparseness as a subset of nonlinearity as sparse systems
occur naturally within many real-world applications (acoustics, seismics,
chemical processes)

• A sparse system is usually defined as a system described by an impulse
response with a relatively large number of inactive coefficients (usually
zero or close to) compared to active, non-zero, ones
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Proportionate Normalised Least Mean Square

One of the most widely used sparse adaptive filters is PNLMS [1]

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

‖x(k)‖2
2 + ε

γ̄(k) = 1/Nsum
N
∑

n=1
γn(k)

γn(k) = max {ρ max{δ, ‖w(k)‖∞}, |wn(k)|}

gn(k) =
γn(k)

γ̄(k)
n = 1, . . . , N

i) PNLMS empirically derived specifically for network echo cancellers

ii) Can be slower than NLMS when approaching steady state

iii) Also inherits problems from NLMS
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Adaptive Step-size Techniques

Adaptive step size techniques have been developed to improve the
convergence of linear adaptive filters in nonstationary environments, these
include:-

• “linear” gradient adaptive learning rates based on ∂E/∂µ
e.g. Benveniste [2], Mathews [3], Farhang [4]

• and a “nonlinear” gradient adaptive update based on ∂E/∂ε
e.g Generalised Normalised Gradient Descent (GNGD) [5]

where E(k)=(1/2)e2(k) is the cost function.

# Introduction of a gradient adaptive regularisation parameter
would make the existing ε–PNLMS algorithms better suited to
operating in real world environments.
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PNLMS with Adaptive Regularisation

To improve the performance of the PNLMS a similar method to GNGD
giving an adaptive regularisation parameter has been derived.
Evaluating the gradient ∇ε(k−1)E(k) gives

∂E(k)

∂ε(k − 1)
= ∂E(k)

∂e(k) · ∂e(k)
∂y(k) ·

∂y(k)
∂w(k) ·

∂w(k)
∂ε(k−1)

= µe(k)e(k−1)xT (k)G(k−1)x(k−1)

[‖x(k−1)‖2
2+ε(k−1)]

2 .

ε(k + 1) = ε(k) − βµ
e(k)e(k − 1)G(k − 1)xT (k)x(k − 1)

(‖x(k − 1)‖2
2 + ε(k − 1))

2

# Notice that, although the derivation starts from the original
PNLMS algorithm, it could be applied equally well to any of its
variants.
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Individual vs. Global Update

Including this adaptive regularisation update into PNLMS update gives us
the generalised PNLMS (GPNLMS)

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

‖x(k)‖2
2 + ε(k)

.

Alternatively taking into account that PNLMS favours some filter
coefficients, it is natural to provide each coefficient with a corresponding
regularisation parameter εn(k). Therefore, we have

εn(k + 1) = εn(k) − βµ
e(k)e(k − 1)xn(k)gn(k − 1)xn(k − 1)

[‖x(k − 1)‖2
2 + εn(k − 1)]

2 ,

giving the generalised individually adaptive PNLMS (GIAPNLMS)

wn(k + 1) = wn(k) + µ
gn(k)e(k)xn(k)

‖x(k)‖2
2 + εn(k)

.
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PNLMS with Robust Regularisation

• GPNLMS algorithm is by design stable and robust to initial settings of
its parameters

• A disadvantage however is it also inherits some steady state stability
problems of GNGD

• One method of overcoming this is to introduce noise into the updates,
helping to avoid convergence to local and spurious minima.

• We therefore propose to improve the performance of the regularised
PNLMS algorithms by introducing some gradient noise into the updates
of the regularisation parameter ε, based on normalising the gradient of
the cost function E(k) with respect to ε,

∇ε(k−1)E(k)
∥

∥∇ε(k−1)E(k)
∥

∥

2

= sgn
[

∇ε(k−1)E(k)
]

.
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PNLMS with Robust Regularisation

Considering first the individual adaptive regularisation, this results in the
sign regularised GIAPNLMS (SR-GIAPNLMS) regularisation parameter
update given by

εn(k + 1) = εn(k) − β sgn

{

e(k)e(k − 1)xn(k)gn(k − 1)xn(k − 1)

[‖x(k − 1)22 + εn(k − 1)]
2

}

.

Notice that the denominator, which is the source of much of the
computational complexity, can be omitted since it is always positive, giving

εn(k + 1) = εn(k) − β sgn [e(k)e(k − 1)gn(k − 1)xn(k)xn(k − 1)] ,

and for the sign regularised GPNLMS (SR-GPNLMS) this gives

ε(k + 1) = ε(k) − β sgn
[

e(k)e(k − 1)xT (k)G(k − 1)x(k − 1)
]

.
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Analysis of SR-GIAPNLMS and SR-GPNLMS

Performance of the SR-GPNLMS and SR-GIAPNLMS, averaged over 100
independent trials, for a benchmark sparse system [6]

0 100 200 300 400 500 600 700 800 900 1000
−40

−20

0

20

40

60

80

100

120

Number of iterations

M
is

al
ig

nm
en

t (
dB

)

 

 

SR−GPNLMS

SGIAPNLMS

• Insufficient information
within the individual
updates of εn,

• reliancy on the
instantaneous and possibly
noisy values xn(k) and
xn(k − 1)

• approaching steady state,
changes in the sign of
the error vector are also
causing the value of εn to
repeatedly fluctuate

all combine, leading to
instability in GIAPNLMS.
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Analysis of SR-GIAPNLMS and SR-GPNLMS

• Considering the G(k − 1) term in the GPNLMS update, omitting (as always positive)

gives

ε(k + 1) = ε(k) − β sgn
h

e(k)e(k − 1)x
T
(k)x(k − 1)

i

.

• Noting the gradient vectors ∇wE(k) = −e(k)x(k) and

∇wE(k − 1) = −e(k − 1)x(k − 1), and their inner product is given by

∇T
w
E(k)∇wE(k − 1) = ‖∇wE(k)‖ · ‖∇wE(k − 1)‖ · cos θ.

• Since ‖∇wE(k)‖ and ‖∇wE(k − 1)‖ are always positive, the update reduces to

ε(k + 1) = ε(k) − β sgn
h

∇
T
w
E(k)∇wE(k − 1)

i

= ε(k) − β sgn [cos θ] .

• Therefore to cause a change in the sign of the ε update, we need |θ| > π/2.

• G(k − 1), has an effect on the direction of x(k − 1) and hence the angle between

the two gradients.

• The difference between x(k) and x(k − 1) is generally small & slight changes to the

direction of x(k − 1) caused by G(k − 1) are not significant.
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Convergence Analysis

• ε(k) has two competing unconstrained optimisation processes with different

convergence speeds,

• One based on ∇wE and the other on ∇εE

• It would benefit from constraints on the allowable values of their parameters,

• In practice for GPNLMS there was no need to include a minimum bound on ε.
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• SR-GPNLMS, has simplified (and hence noisy) updates of ε.

• In this case and due to its unconstrained nature the SR-GPNLMS diverged

• A lower bound of a lower bound of εmin =0 had to be introduced
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Critical Operating Conditions

• When ‖x(k)‖2
2 → 0 then µ

‖x(k)‖22+ε(k)
→ ∞

• To simulate this effect the value of µ is increased to µ=1.95, at which point

PNLMS is on the limit of stability

• As well as comparing the algorithms with the original PNLMS the commonly used

updated version was also implemented

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

xT (k)G(k)x(k) + ε
,
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Sensitivity of Algorithms to Their Parameters
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• ρ was varied in the range [0, 1], for

which the behaviour of the PNLMS

approaches that of the NLMS.

• Changes in δ were not investigated,

as only effects the algorithm initially

when all filter coefficients are zero.

• The value of µ was varied in the range

[0, 3], with µ ∈ [2, 3) being outside

the normal range of stability for the

PNLMS.

The

PNLMS and GPNLMS algorithms exhibited similar performance for
0<µ≤1.8, but beyond this the difference between the two algorithms is
clearly apparent with the PNLMS becoming extremely unstable.
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Sensitivity of Algorithms to Their Parameters

Comparison of GPNLMS and SR-GPNLMS over the same ranges
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• Both algorithms was clearly still under

control

• For all settings with µ ≤ 2.5,

SR-GPNLMS had similar or better

performance than GPNLMS.

• For situations with µ > 2.5,

GPNLMS showed better stability

than SR-GPNLMS, due to its more

rigorous derivation,

• The SR-GPNLMS offers a viable

alternative as a trade-off between

performance and computational

complexity
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Conclusions

• A class of algorithms with gradient adaptive regularisation parameters
has been proposed.

• To avoid problems experienced with PNLMS when processing inputs
with large dynamics and ill conditioned tap input correlation matrices.

• The GIAPNLMS has been derived rigorously to give an individual
update for each filter coefficient.

• In practice the improvement in performance offered over the GPNLMS
did not compensate for the extra computational complexity.

• To overcome problems incurred in steady state & reduce computational
complexity, a robust regularisation parameter has also been derived.

• Simulations show the proposed class of algorithms to be stable in a wide
range of situations and robust to parameter initialization.
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