
Assessment of Nonlinearity in Brain Electrical Activity: A DV V Approach

Mo Chen†, Tomasz M. Rutkowski*, Beth Jelfs†, George Souretis†, Jianting Cao‡ and Danilo Mandic†

† Depart. of Electrical Engr.
Imperial College London, U.K.
Email: {mo.chen02, beth.jelfs,

george.souretis, d.mandic}@imperial.ac.uk

* Lab for Brain Signal Processing
RIKEN center, Japan

Email: tomek@brain.riken.jp

‡*Saitama Institute of Technology
Saitama, Japan

Email: cao@sit.jp

Abstract

In this paper, we provide a comprehensive analysis of the
EEG data recorded in a steady-state visual evoked potentials
(SSVEPs) experiment. This is based upon the recently in-
troduced the ‘delay vector variance’(DVV) method for signal
characterisation, which examines the local predictability of
the signal in the phase space and checks simultaneously the
signal nonlinearity and the determinism. Simulation results
support the analysis.

1. Introduction

Brain-computer interfaces (BCIs) are technical systems
which provide a direct connection between the human brain
and a computer [1][2]. Research in this field has been
increasing in the last few years. In particular, Middendorf
et al [3] introduced a system that evaluates the focus of
the subject’s gaze by resulting amplitude changes of the
measured steady-state visual evoked potentials (SSVEPs).A
flickering light source elicits SSVEPs of the corresponding
flickering frequency, measurable over the occipital cortex,
while the subject shifts his gaze to these stimuli. In order to
enable higher dimensional discrimination multiple flickering
lights need to be introduced to . The analysis of these
SSVEPs signals can help interpret the functioning of human
brain. However, most of the methods are linear frequency
domain based [4], which do not account for nonlinearity,
multi-modal problems and high order statistics.

On the other hand, signal modality characterisation is be-
coming an increasingly important area of multi-disciplinary
research and large effort has been put into devising efficient
algorithms for this purpose. The idea is that the changes
in the signal nature between linear and nonlinear and deter-
ministic and stochastic can reveal information (knowledge)
which is critical in certain applications, for instance, the
nature of the heart rate variability signal changes from sto-
chastic (linear) to chaotic (nonlinear) depending on whether
the patient is healthy or not [5].

By the use of some recently introduced methods for
signal characterisation, based on the local predictability in
the state space, we therefore provide a theoretical analysis
for EEG SSVEPs signals.

2. The Definition of ’Nature’ of A Signal and ‘Delay Vec-
tor Variance’ (DVV) Method

By the signal ‘nature’, we adhere to the above two
sets of signal properties: linear/nonlinear, and determinis-
tic/stochastic. The strict definition of alinear signal is that
it is generated by a linear shift-invariant system1 driven by
white Gaussian noise (WGN). In practice, this definition is
relaxed somewhat by allowing the distribution of the signal
to deviate from the Gaussian one, which can be interpreted
as a linear signal following the strict definition, measuredby
a static (possibly nonlinear) observation function. A signal
that cannot be generated in the above way is considered
nonlinear. A signal is considered deterministic if it can be
precisely described by a set of equations, otherwise it is
considered stochastic.

There is one more concept we need to address before
we introduce our novel method for signal characterisation,
that is the method of surrogate data, or ‘surrogates’ for
short. They are artificially generated randomised data,
preserving the linear properties of the original signal,e.g.,
mean, variance and power spectrum, while all the nonlinear
predictability is destroyed during the randomisation. There
are various methods for generating surrogate data. However,
in this paper, we opt for iterative amplitude adjusted Fourier
transform (iAAFT) surrogate data since it is proved to yield
reliable results [6]. For more details on surrogate data, please
refer to [7].

Many methods for detecting the nonlinear structure within
a signal have been proposed, such as the classic ‘surrogate

1System nonlinearity is defined differently from signal nonlinearity. A
linear shift-invariant system,f(·), obeys the superposition and scaling prop-
erty: i) for a, b ∈ R : f(ax +by) = af(x)+bf(y), ii) it produces identical
outputs for a given input applied at different instants of time.



data‘ with different choices of discriminating statistics,
‘deterministic versus stochastic’ (DVS) plot [8], δ-ε Method
[9]. For our purpose, it is desirable to have a method which
is straightforward to visualise, and which makes use of
some notions from nonlinear dynamics and chaos theory,
e.g., embedding dimension and phase space [10]. One such
method is our recently proposed ‘delay vector variance’
(DVV) method [11], which is based upon examining the
predictability of a signal in the phase space, and examines
simultaneously the determinism and nonlinearity within a
signal.

For an optimal2 embedding dimensionm, the DVV
algorithm can be summarised in the following way:-

• Map the original time series from time domain to a
set of delay vectors (DVs) in phase space,x(k) =
[xk−τm, . . . , xk−τ ]T , k = 1, . . . , N − m + 1, where
N denotes the length of the time series andτ denotes
the time lag which for convenience is set to unity in all
the simulations and the corresponding targetxk;

• The meanµd and standard deviationσd are computed
over all pairwise Euclidean distances between DVs,
‖x(i) − x(j)‖(i 6= j);

• The setsΩk(rd) are generated such thatΩk(rd) =
{x(i)|‖x(k) − x(i)‖ ≤ rd}, i.e., sets which consist of
all DVs that lie closer tox(k) than a certain distance

rd(n) = µd−ndσd+(n−1)
2ndσd

Ntv − 1
, n = 1, . . . , Ntv

(1)
whereNtv denotes how fine the standardised distance is
uniformly spaced, andnd is a parameter controlling the
span over which to perform the DVV analysis;

• For every setΩk(rd), the variance of the corresponding
targets,σ2

k
(rd), is computed. The average over all sets

Ωk(rd), normalised by the variance of the time series,
σ2

x, yields the ‘target variance’,σ∗2(rd):

σ∗2(rd) =

1

N

N∑

k=1

σ2

k
(rd)

σ2
x

(2)

We only consider a variance measurementvalid, if the
setΩk(rd) contains at leastN0 = 30 DVs, since too few
points for computing a sample variance yields unreliable
estimates of the true variance. For more details, please
refer to [11, 13].

2In this paper, the optimal embedding dimension is calculated byCao’s
method [12], since this method is demonstrated to yield robust results on
various signals.

The idea behind the DVV method is: if two DVs of a
predictable signal lie close to one another in terms of their
Euclidean distance, they should also have similar targets.
The smaller the Euclidean distance between them, the more
similar targets they have. Therefore, the presence of a strong
deterministic component within a signal will lead to small
target variances for small spansrd. The minimal target
variance,σ∗2

min
= minrd

[σ∗2(rd)], is a measure for the
amount of noise present within the time series. Besides, the
target varianceσ∗2

min
has an upper bound which is unity. This

is because, whenrd becomes large enough, all DVs belong to
the same setΩk(rd). Thus, the variance of the corresponding
target of those DVs will be almost identical to that of the
original time series.

In the following step, the linear or nonlinear nature of
the time series is examined by performing the DVV test on
both the original and a number of surrogate time series3 [14],
using the optimal embedding dimension of the original time
series.

Due to the standardisation of the distances, the DVV
plots can be conveniently combined4 within a scatter dia-
gram, where the horizontal axis corresponds to the DVV plot
of the original time series, and the vertical axis to that of the
surrogate time series. If the surrogate time series yield DVV
plots similar to that of the original time series as shown in
Figure 1(a), the ‘DVV scatter diagram’ coincides with the
bisector line, and the original time series isjudged to be
linear, as shown in Figure1(c). If not as shown in Figure
1(b), the original time series isjudged to be nonlinear, as
depicted in Figure1(d). Since the minimal target variance
indicates a strong deterministic component within the signal,
we conclude that in DVV scatter diagrams, the more the
curve approaches the vertical axis, the more deterministic
the nature of the signal. This can be employed as a conve-
nient criterion for estimating the level of noise within a signal.

To illustrate the meaning of ‘signal nature’ and the us-
age of DVV method, consider a benchmark linear signal
(AR(4)) [15], given by

x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k − 3)

− 0.41x(k − 4) + n(k) (3)

and a benchmark nonlinear signal, the Narendra Model Three

3In this paper, all the DVV tests are performed using 19 surrogate data
realisations. The reason for this is that with the increase in the number of
surrogate data, DVV tests do not yield a much better result whereas the com-
putational complexity is much increased.

4In fact, target variance (σ∗2) of the original data is plotted against the
mean of the target variance of 19 surrogate data, for all corresponding dis-
tances (rd−µd

σd

).



[16], given by

z(k) =
z(k − 1)

1 + z2(k − 1)
+ r3(k)

r(k) = 1.79 r(k − 1) − 1.85 r(k − 2) + 1.27 r(k − 3)

− 0.41 r(k − 4) + n(k) (4)

wheren(k) ∼ N (0, 1). Figure1 illustrates the signal nature
of these two benchmark signals. The upper two diagrams are
DVV plots, which are obtained by plotting the target vari-
ance as a function of standardised distance. The lower two
diagrams (DVV scatter diagram) are obtained by plotting the
target variance of the original data against the mean of the
target variances of the surrogate data, where the error bars
denote the standard deviation for the surrogate data. From
the Figure, the DVV scatter diagram for AR(4) signal lies on
the bisector line, indicating its linear nature whereas that for a
Narendra Model Three signal deviates from the bisector line,
indicating its nonlinear nature.
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Figure 1: Nonlinear and deterministic nature of signals. The
upper two diagrams represent DVV plots, obtained by plot-
ting the target variance as a function of standardised distance,
where the line with crosses denotes the DVV plot for the aver-
age of 25 iAAFT-based surrogates and the solid line denotes
that for the original signal. The lower two diagrams repre-
sent DVV scatter diagrams, obtained by plotting the target
variance of the original data against the mean of the target
variances of the surrogate data where error bars denote the
standard deviation of the target variance of surrogate data.

As it is capable of examining the nonlinearity and deter-
minism simultaneously, DVV method is employed as a pow-

erful tool for characterising the nature of a signal in the fol-
lowing chapters.

3. Experimental Settings and Simulation Results

The experiment of steady-state visual evoked potentials
(SSVEPs) was conducted in the laboratory for advanced
brain signal processing at RIKEN, Japan. Three different
sets of EEG data were recorded during pre-stimuli, stimuli
and post-stimuli sessions, when subjects were gazing at the
center of computer screens where rectangles appeared from
time to time.

The ‘delay vector variance’ (DVV) method was utilised
to characterise these three EEG data sets in terms of non-
linearity and deterministic signal nature. The embedded
dimension was found to be (do you have the parameter
settings?) and time lag was set to unity in all the simulations.
We chose to generate 25 iAAFT surrogate data sets since
increasing the amount of surrogate data does not further
improve the results but hugely increases the computation
complexity.

Figure 2: EEG data and associated DVV plots. Top panel:
three EEG signals recorded pre-stimuli, during stimuli and
post-stimuli from left to right. Middle panel: DVV plots for
these three EEG signals, where the line with crosses denotes
the DVV plot for the average of 25 iAAFT surrogates and
the solid line denotes that for the original EEG data. Bottom
panel: DVV scatter diagram for the three EEG signals, where
the error bars denote the standard deviation for the averageof
the target variance Eq.(2) of surrogate data.



Figure2 illustrates the DVV experiments conducted on the
EEG data. Top panel denotes the time-domain representation
of the three EEG signals recorded pre-stimuli, during stimuli
and post-stimuli from left to right. The middle panel denotes
DVV plots for these three EEG signals, where the line with
crosses denotes the DVV plot for the average of 25 iAAFT
surrogates and the solid line denotes that for the original EEG
data. The bottom panel denotes DVV scatter diagram for the
three EEG signals, where the error bars denote the standard
deviation for the average of the target variance Eq.(2) of
surrogate data.

From the top panel of the Figure, although there exists
a difference between the stimuli EEG and the other two
EEG data sets, we cannot tell whether it was caused due
to the change of the nature of the EEG signal or simply
the amplitude of the signal changed. However, in the DVV
scatter diagrams for the three EEG signals (bottom panel),
such difference was obvious and easy to observe. Bearing in
mind that if the DVV scatter diagram lies on the bisector line,
the signal is considered to be linear, the EEG signal during
stimuli is almost linear whereas the other two are nonlinear.
This can be understood in the following way:- During the
stimuli session, the brain was doing nothing else but giving
processing visual information the highest priority. Such
focus results in the linear EEG signal. Before the stimuli
appeared on the screen, the subject was probably wondering
what would happen and the brain was not only processing
the visual information but also information obtained from
other perceptual organs,e.g., ears, nose, which leads to the
nonlinearity present in the EEG signal.

From the middle panel, the local predictability of those
three EEG signals were examined by means of DVV plots.
As discussed in Section 2, the value of the leftmost point
of DVV plot indicates unpredictability, that is, the lower
the more predictable. Clearly, the EEG signal recorded
before stimuli has the worst local predictability (almost as
unpredictable as white Gaussian noise), post-Stimuli EEG
was slightly better and EEG for stimuli period was most
predictable. This is because in pre-stimuli session the subject
was inevitably anxious and nervous in some degree, the brain
started to wonder and randomly process the information,
which increased the noise level in the EEG signal. During
the stimuli session, the brain started to function normally
according to what the subject observed on the screen and
the EEG signal appeared pseudo-periodical, which leads to
the best predictability. However, in the post-stimuli session,
although the subject stopped focusing, the images left during
the stimuli session continued to appear in the brain, which
increased the noise level in the EEG signal. Compared to
the pre-stimuli session, the EEG signal is more predictable
in post-stimuli session as the subject was not anxious or

nervous any longer.

4. Conclusions

In this paper, we have provided a comprehensive analysis
for the EEG signals recorded in a steady-state visual evoked
potentials (SSVEPs) experiment. This is achieved by means
of the recently introduced ‘delay vector variance’ (DVV)
method for signal characterisation, based upon the local pre-
dictability in phase space. It has been shown that the EEG
signal recorded during the stimuli session is linear and has
better predictability than that for the other two sessions.Rig-
orous simulations support the analysis.
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