Assessment of Nonlinearity in Brain Electrical Activity: A DV V Approach
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Abstract By the use of some recently introduced methods for

signal characterisation, based on the local predictghitit

In this paper, we provide a comprehensive analysis of i state space, we therefore provide a theoretical asalysi
EEG data recorded in a steady-state visual evoked potentigt EEG SSVEPs signals.

(SSVEPs) experiment. This is based upon the recently in-

troduced Fhe _delay v_ector vanance (BWV) methoq for s_@ni The Definition of 'Nature’ of A Signal and ‘Delay Vec-
characterisation, which examines the local predictgbdit tor Variance’ (DVV) Method

the signal in the phase space and checks simultaneously e

signal nonlinearity and the determinism. Simulation resul By the signal ‘nature’, we adhere to the above two

support the analysis. sets of signal properties: linear/nonlinear, and deteigmin
tic/stochastic. The strict definition of lenear signal is that

1. Introduction it is generated by a linear shift-invariant systedriven by
white Gaussian noise (WGN). In practice, this definition is

Brain-computer interfaces (BCls) are technical systemgaxed somewhat by allowing the distribution of the signal

which provide a direct connection between the human braindeviate from the Gaussian one, which can be interpreted

and a computerI[2]. Research in this field has beers a linear signal following the strict definition, measuigd

increasing in the last few years. In particular, Middendogf static (possibly nonlinear) observation function. A sign

et a [3] introduced a system that evaluates the focus @fat cannot be generated in the above way is considered

the subject's gaze by resulting amplitude changes of thenlinear. A signal is considered deterministic if it can be

measured steady-state visual evoked potentials (SSVEBPsprecisely described by a set of equations, otherwise it is
flickering light source elicits SSVEPs of the correspondingynsidered stochastic.

flickering frequency, measurable over the occipital cqrtex
while the subject shifts his gaze to these stimuli. In order there is one more concept we need to address before
enable higher dimensional discrimination multiple flidker we introduce our novel method for signal characterisation,
lights need to be introduced to . The analysis of thegit is the method of surrogate data, or ‘surrogates’ for
SSVEPs signals can help interpret the functioning of humgiort. They are artificially generated randomised data,
brain. However, most of the methods are linear frequengseserving the linear properties of the original sigred,
domain based], which do not account for nonlinearity,mean, variance and power spectrum, while all the nonlinear
multi-modal problems and high order statistics. predictability is destroyed during the randomisation. fEhe
are various methods for generating surrogate data. Hoywever
On the other hand, signal modality characterisation is ha-this paper, we opt for iterative amplitude adjusted Feuri
coming an increasingly important area of multi-discipfina transform (IAAFT) surrogate data since it is proved to yield

research and large effort has been put into devising efficigsliable resultsf]. For more details on surrogate data, please
algorithms for this purpose. The idea is that the changeser to [].

in the signal nature between linear and nonlinear and deter-
ministic and stochastic can reveal information (knowl§dg®lany methods for detecting the nonlinear structure within
which is critical in certain applications, for instancegetha signal have been proposed, such as the classic ‘surrogate
nature of the heart rate variability signal changes from ste 1 | efined differently | | rog

P ; ; ; System nonlinearity is defined differently from signal rinabrity. A
chastic (linear) to chaotic (nonlinear) depending on Wemninear shift-invariant systeny,(-), obeys the superposition and scaling prop-

the patient is healthy or nof[. erty: i)fora,b € R : f(ax +by) = af(x)+bf(y), i) it produces identical
outputs for a given input applied at different instants ofeti




data’ with different choices of discriminating statisticsThe idea behind the DVV method is: if two DVs of a
‘deterministic versus stochastic’ (DVS) pldi][ 5-¢ Method predictable signal lie close to one another in terms of their
[9]. For our purpose, it is desirable to have a method whi&luclidean distance, they should also have similar targets.
is straightforward to visualise, and which makes use ©he smaller the Euclidean distance between them, the more
some notions from nonlinear dynamics and chaos theainilar targets they have. Therefore, the presence of agtro
e.g., embedding dimension and phase spacg. [One such deterministic component within a signal will lead to small
method is our recently proposed ‘delay vector variandgrget variances for small spamg. The minimal target
(DVV) method [L1], which is based upon examining thevariance,c*% = min,, [0*?(ry)], is a measure for the
predictability of a signal in the phase space, and examirasount of noise present within the time series. Besides, the
simultaneously the determinism and nonlinearity within target variance 2, has an upper bound which is unity. This
signal. is because, whery, becomes large enough, all DVs belong to
the same se®(r4). Thus, the variance of the corresponding
For an optimal embedding dimensionm, the DVV target of those DVs will be almost identical to that of the

algorithm can be summarised in the following way:- original time series.

 Map the original time series from time domain t0 & the following step, the linear or nonlinear nature of
set of delay vectTors (DVs) in phase spacgk) = the time series is examined by performing the DVV test on
[@k—rm,. s Te—r]", k= 1,...,N —m + 1, where poth the original and a number of surrogate time séfieg,

N denotes the length of the time series andenotes sing the optimal embedding dimension of the original time
the time lag which for convenience is set to unity in aleries.

the simulations and the corresponding targgt

L Due to the standardisation of the distances, the DVV
e The meanu, and standard deviatiom; are computed

I pairvise Euclid i b D\)olots can be conveniently combirfedithin a scatter dia-
over all pairwise Euclidean distances between gram, where the horizontal axis corresponds to the DVV plot

(@) = %)@ # 7); of the original time series, and the vertical axis to thathaf t
surrogate time series. If the surrogate time series yiel DV
plots similar to that of the original time series as shown in
Figure 1(a), the ‘DVV scatter diagram’ coincides with the
bisector line, and the original time seriesjigiged to be
e linear, as shown in Figuréd.(c). If not as shown in Figure
Nyy—1 n=1,....,Nw 1(b), the original time series ifudged to be nonlinear, as
(1) depicted in Figurel(d). Since the minimal target variance
whereN;, denotes how fine the standardised distanceiglicates a strong deterministic component within the align
uniformly spaced, and, is a parameter controlling thewe conclude that in DVV scatter diagrams, the more the
span over which to perform the DVV analysis; curve approaches the vertical axis, the more deterministic
the nature of the signal. This can be employed as a conve-
e For every sef);(rq), the variance of the correspondingient criterion for estimating the level of noise within grsal.
targets,o(rq), is computed. The average over all sets
Qx(rq), normalised by the variance of the time serie$p illustrate the meaning of ‘signal nature’ and the us-
o2, yields the ‘target variances*?(ry): age of DVV method, consider a benchmark linear signal
(AR(4)) [15], given by

e The setsQ(rq) are generated such th&t;(ry)
{X(@)|[|x(k) = x(2)|] < rq}, i.e, sets which consist of
all DVs that lie closer tox(k) than a certain distance

ra(n) = pg—nqoq+(n—1)

N
% > oilra) x(k) = 1.79z(k — 1) — 1.85x(k — 2) 4+ 1.27z(k — 3)
0*2(rq) = ’“:;72 @) — 0.41z(k — 4) + n(k) ®3)

T

We only consider a variance measuremeadtd, if the and a benchmark nonlinear signal, the Narendra Model Three
setQ(rq) contains at leas¥, = 30 DVs, since too few

pOI!’H‘S for computing a sa_mple variance ylelds lmre“able?’ln this paper, all the DVV tests are performed using 19 sutedata
estimates of the true variance. For more details, pleaggisations. The reason for this is that with the increastaé number of

referto [L1, 13]. surrogate data, DVV tests do not yield a much better resultedsesthe com-
putational complexity is much increased.
2|n this paper, the optimal embedding dimension is calculateGdys “In fact, target varianceo(*2) of the original data is plotted against the

method [L7], since this method is demonstrated to yield robust results g¥ean of the target variance of 19 surrogate data, for all spareding dis-
various signals. tances Fd;d“d )-



[1€], given by erful tool for characterising the nature of a signal in the fo
lowing chapters.

B z(k—1) 3
z(k) = T4 20— 1) + (k)
r(k)=1.79r(k—1)—1.85r(k—2)+ 1.27r(k — 3) 3. Experimental Settings and Simulation Results
—0.41r(k —4) +n(k) 4)

The experiment of steady-state visual evoked potentials
wheren(k) ~ N(0,1). Figurel illustrates the signal nature(SSVEPs) was conducted in the laboratory for advanced
of these two benchmark signals. The upper two diagrams brain signal processing at RIKEN, Japan. Three different
DVV plots, which are obtained by plotting the target varsets of EEG data were recorded during pre-stimuli, stimuli
ance as a function of standardised distance. The lower @l post-stimuli sessions, when subjects were gazing at the
diagrams (DVV scatter diagram) are obtained by plotting tieenter of computer screens where rectangles appeared from
target variance of the original data against the mean of thee to time.
target variances of the surrogate data, where the error bars
denote the standard deviation for the surrogate data. Frohe ‘delay vector variance’ (DVV) method was utilised
the Figure, the DVV scatter diagram for AR(4) signal lies aw characterise these three EEG data sets in terms of non-
the bisector line, indicating its linear nature whereasfitiea linearity and deterministic signal nature. The embedded
Narendra Model Three signal deviates from the bisector linkmension was found to be (do you have the parameter

indicating its nonlinear nature. settings?) and time lag was set to unity in all the simulation
We chose to generate 25 iIAAFT surrogate data sets since
DVV plot for AR(4) signal DVV plot for Narendra Model 3 increasing the amount of surrogate data does not further
T Sinogate : improve the results but hugely increases the computation

complexity.
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Figure 1: Nonlinear and deterministic nature of signalse Tl D;/ _ -
upper two diagrams represent DVV plots, obtained by plc  ° ™ “eriginat ©* LT Roriginat £ Moriginal”
ting the target variance as a function of standardisedrista

where the line with crosses denotes the DVV plot for the aver-

age of 25 iAAFT-based surrogates and the solid line denofdgure 2: EEG data and associated DVV plots. Top panel:
that for the original signal. The lower two diagrams repréreée EEG signals recorded pre-stimuli, during stimuli and
sent DVV scatter diagrams, obtained by plotting the targty{ast—stlmull from Ieft to right. Middle pane[: DVV plots for
variance of the original data against the mean of the tar&?ﬁse three EEG signals, where the line with crosses denotes
variances of the surrogate data where error bars denotelfifeDVV plot for the average of 25 IAAFT surrogates and

standard deviation of the target variance of surrogate datathe solid line denotes that for the original EEG data. Bottom
panel: DVV scatter diagram for the three EEG signals, where

As it is capable of examining the nonlinearity and deteif?e error bars_denote the standard deviation for the averfage
minism simultaneously, DVV method is employed as a powie target variance E@Y of surrogate data.

o

o



Figure2 illustrates the DVV experiments conducted on theervous any longer.
EEG data. Top panel denotes the time-domain representation
of the three EEG signals recorded pre-stimuli, during siimu  conclusions
and post-stimuli from left to right. The middle panel dersote
DVV plots for these three EEG signals, where the line with In this paper, we have provided a comprehensive analysis

: r the EEG signals recorded in a steady-state visual evoked
crosses denotes the DVV plot for the average of 25 IAA J:)tentials (SSVEPs) experiment. This is achieved by means

SUrrOgateS and the solid line denotes that for the Orlglﬁﬂ E of the recenﬂy introduced ‘de|ay vector variance’ (DVV)
data. The bottom panel denotes DVV scatter diagram for timethod for signal characterisation, based upon the loeal pr

three EEG signals, where the error bars denote the stand@hgéfbility in phase space. It has been shown that the EEG

- : signal recorded during the stimuli session is linear and has
deviation for the average of the target variance Badf pgyter predictability than that for the other two sessidRig-

surrogate data. orous simulations support the analysis.
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