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Abstract. Quantitative performance criteria for the analysis of machine
learning architectures and algorithms have been long established. How-
ever, the qualitative performance criteria, e.g., nonlinearity assessment,
are still emerging. To that end, we employ some recent developments
in signal characterisation and derive criteria for the assessment of the
changes in the nature of the processed signal. In addition, we also pro-
pose a novel online method for tracking the system nonlinearity. A com-
prehensive set of simulations in both the linear and nonlinear settings
and their combination supports the analysis.

1 Introduction

Real-world processes are typically mixtures of linear and nonlinear signal com-
ponents (which can be either deterministic or stochastic) and noise, yet it is a
common practice to process them using linear, mathematically tractable, mod-
els. To illustrate the need to asses the nature of a real world signal prior to
choosing the actual computational model, Figure 1 (modified from [1]), shows
the range spanned by the fundamental signal properties of “nonlinear” and
“stochastic”. Despite the fact that real-world processes, due to nonlinearity, un-
certainty and noise, are located in areas such as those denoted by (a), (b), (c)
and ‘?’, in terms of computational models, only the very specialised cases such
as the linear-stochastic autoregressive moving average (ARMA), and chaotic
(nonlinear-deterministic) models are well understood. It is therefore necessary
to verify the presence of an underlying linear or nonlinear signal generation sys-
tem, before the actual filters or models are constructed. Indeed, in the absence
of nonlinearity within a signal in hand, it is not advantageous to use nonlinear
models since these are more difficult to train than their linear counterparts, due
to issues such as overfitting and computational complexity.

Research on “signal modality characterisation” started in physics in the mid
1990s and its applications in machine learning and signal processing applica-
tion are just beginning to emerge. It is essential that during processing of such
signals we not only optimise for the “best” performance in terms of a certain
quantitative performance criterion, but also that the processing preserves the
desired fundamental properties of the signal, for instance, the nonlinear and de-
terministic nature (qualitative performance). If the desired signal property has
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Fig. 1. Sketch of the variety of signals spanned by the properties “nonlinearity” and
“stochasticity” . Areas where theoretical knowledge and technology for the analysis of
time series are available are outlined, such as “Chaos” and “ARMA”. (Modified from
(Schreiber, 1999))

significantly changed after processing (e.g. prediction within compression algo-
rithms and denoising), the application of such filters will be greatly limited. As
a consequence, such architectures and algorithms will not be suitable in situa-
tions where the signal nature is of critical importance, for instance, in speech
processing.

Notice that the very core of adaptive learning is the change in the shapes
of signal spectrum, this reflects only the performance in terms of second order
statistics, and no account of other signal characteristics is provided. To that
cause, we propose a new framework for the assessment of qualitative perfor-
mance in machine learning, and set out to investigate whether an improvement
in the quantitative performance is necessarily followed by the improvement in
the qualitative performance. For generality and to illustrate this trade-off, this
is achieved for both the linear and nonlinear filters.

On the other hand, the existing signal modality characterisation algorithms
in this area are typically based on hypothesis testing [2—4] and describe the signal
changes in a statistical manner. However, there are very few online algorithms
which are suitable for this purpose. Therefore, in this chapter, we will also pro-
pose to demonstrate the possibility of online algorithms which can be used not
only to identify the nature of the signal, but also to track changes in the nature
of the signal (signal modality detection).

2 Background Theory

Before introducing new criteria for the analysis of qualitative performance in
machine learning and the online algorithm for tracking system nonlinearity, we



set out to provide some necessary background focusing on some recent results
on signal characterisation.

2.1 “Nature” of A Signal
By the signal ‘nature’ [5][6], we adhere to a number of signal properties such as:-

i) Linear (strict definition) — A linear signal is generated by a linear time-
invariant system, driven by white Gaussian noise;

ii) Linear (commonly adopted) — Definition ¢) is relaxed somewhat by allowing
the distribution of the signal to deviate from the Gaussian one, which can
be interpreted as a linear signal from ), measured by a static (possibly
nonlinear) observation function;

iii) Nonlinear — A signal that cannot be generated in the above way is considered
nonlinear;

iv) Deterministic (predictable) — A signal is considered deterministic if it can
be precisely described by a set of equations;

v) Stochastic — A signal that is not deterministic.

2.2 Method of Surrogate Data and the concept of “Phase Space”

Research on signal nonlinearity detection started in physics in the 1990s, and
out of the several proposed methods, the so-called ‘surrogate data’ method,
introduced by Theiler et al. [7], has been extensively used in the context of
statistical nonlinearity testing. A surrogate time series, or ‘surrogate’ for short,
is a realisation of a ‘composite’ null hypothesis. In our case this null hypothesis
is that the original signal is linear, i.e., generated by a linear stochastic system
driven by white Gaussian noise, measured by a static, monotonic and possibly
nonlinear observation function. Then, a discriminating statistic is calculated for
both the original time series and a set of surrogate data. If the statistics for
the original time series do not lie in the range of those for the surrogate data,
the null hypothesis is rejected, and the original data is judged to be nonlinear,
otherwise, it is judged to be linear. There exist many discriminating statistics,
the commonly used ones include the so-called third-order auto-covariance (C3)
[4] and the asymmetry due to time reversal (REV) [4]. In order to increase
the power of the surrogate test and decrease the spurious rejections of the null
hypothesis, several modified methods for the generation of surrogate data have
been proposed. In this chapter, we adopt the iterative amplitude adjusted Fourier
Transform (1IAAFT) surrogate method [8]. The iAAFT surrogate data have their
amplitude spectra similar and their amplitude distribution identical to those of
the original time series.

Techniques described in this chapter rest upon the method of time delay
embedding for representing a time series in so-called ‘phase space’, i.e., by a
set of delay vectors (DVs) x(k) of a given embedding dimension m, that is
x(k) = [Th—mr,-- -, Th—r]T, where 7 is a time lag, which for simplicity is set to



unity in all simulations. In other words, x(k) is a vector containing m consecutive

time samples.

From Figure 2(a), although the wave form and the power spectrum of the
two signals are similar to one another, distinct difference can be observed in two
phase space scatter plots. There is some sort of structure in the scatter plot for
the chaotic signal, whereas the surrogate displays randomness in the scatter plot.
The reason for this is that during the surrogate-generation process the temporal
and spatial correlations were completely destroyed due to the randomisation
scheme. Figure 2(b) illustrates the attractors for vowel /ao/ and consonant /s/
in phase space scatter plot. From the Figure, it is clear that these two phonemes

differ from one another in nature.
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2.3 Signal Characterisation Tool: “Delay Vector Variance” (DVV)
Method

Many methods for detecting the nonlinear structure within a signal have been
proposed, such as the above mentioned surrogate data with different choices
of discriminating statistics, “Deterministic versus Stochastic” (DVS) plot [9],
d-¢ Method [10]. For our purpose, it is desirable to have a method which is
straightforward to visualise, and which makes use of some notions from nonlinear
dynamics and chaos theory, e.g., embedding dimension and phase space. One
such method is our recently proposed “Delay Vector Variance” (DVV) method
[2], which is based upon examining the predictability of a signal in the phase
space, and examines simultaneously the determinism and nonlinearity within a
signal.

The DVV algorithm can be summarised in the following way:- For a given

optimal embedding dimension! m:

— Map the original time series from time domain to a set of delay vectors (DVs)

in phase space, x(k) = [Zx_rm,.-.,Tk_r]’, where 7 is the time lag which
for convenience is set to unity in all the simulations and the corresponding
target zy;

— The mean pg and standard deviation o4 are computed over all pairwise
Euclidean distances between DVs, ||x(i) — x(5)|| (7 # J);

— The sets 2;(rq) are generated such that 2 (rq) = {x(3)|||x(k) —x@)| < ra},
i.e., sets which consist of all DVs that lie closer to x(k) than a certain distance

2ndod
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ra(n) = pqg — ngog + (n — 1)
where Ng, denotes how fine the standardised distance is uniformly spaced,
and ng is a parameter controlling the span over which to perform the DVV
analysis;

— For every set (2;(rq), the variance of the corresponding targets, U,%(rd), is
computed. The average over all sets (2 (r4), normalised by the variance of
the time series, 02, yields the ‘target variance’, o*2(rq):

0*2(Td) _ % Zivzl O’I%(Td) (2)

We only consider a variance measurement valid, if the set (2;(rq) contains
at least Ny = 30 DVs, since too few points for computing a sample variance
yields unreliable estimates of the true variance. For more details, please refer
to [2] [5].

For a predictable signal, the idea behind the DVV method is:- if two DVs lie close
to one another in terms of their Euclidean distance, they should also have similar

! In this chapter, the optimal embedding dimension is calculated by Cao’s method
[11], since this method is demonstrated to yield robust results on various signals.



targets. The smaller the Euclidean distance between them, the more similar
targets they have. Therefore, the presence of a strong deterministic component
within a signal will lead to small target variances for small spans r4. The minimal
target variance, o2, = min,,[0*?(rq)], is a measure for the amount of noise
present within the time series. Besides, the target variance 0%, has an upper
bound which is unity. This is because, when r4 becomes large enough, all the
DVs belong to the same set 24 (r4). Thus, the variance of the corresponding
target of those DVs will be almost identical to that of the original time series.
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Fig. 3. Nonlinear and deterministic nature of signals. The upper two diagrams (DVV
plot) are obtained by plotting the target variance as a function of standardised distance.
The lower two diagrams (DVV scatter diagram) are obtained by plotting the target

variance of the original data against the mean of the target variances of the surrogate
data.



In the following step, the linear or nonlinear nature of the time series is
examined by performing the DVV test on both the original and a number of
surrogate time series? [7], using the optimal embedding dimension of the original
time series. Due to the standardisation of the distances, the DVV plots can
be conveniently combined® within a scatter diagram, where the horizontal axis
corresponds to the DVV plot of the original time series, and the vertical axis to
that of the surrogate time series. If the surrogate time series yield DVV plots
similar to that of the original time series, the ‘DVV scatter diagram’ coincides
with the bisector line, and the original time series is judged to be linear, as shown
in Figure 3(c). If not, the original time series is judged to be nonlinear, as depicted
in Figure 3(d). Since the minimal target variance indicates a strong deterministic
component within the signal, we conclude that in DVV scatter diagrams, the
more the curve approaches the vertical axis, the more deterministic the nature
of the signal. This can be employed as a convenient criterion for estimating the
level of noise within a signal.

3 Qualitative and Quantitative Performance Analysis

To assess the quantitative performance of learning algorithms, it is convenient
to use the standard one-step forward prediction gain [12]:-

)

R, = 1010g, (25 )[dB] (3)

Ue

which is a logarithmic ratio between the estimated signal variance 62 and esti-
mated prediction error variance 62. On the other hand, to assess the qualitative
performance, that is, a possible change in the signal nature introduced by a filter,
we proposed to compare DVV scatter diagrams of the output signals with those
of the original signal. In the prediction setting, the target variances Eq. (2) for
the predicted signal and its surrogates are obtained by performing the DVV test
on the predicted signal. For robustness, these steps are repeated 100 times.

If the considered filters yield high prediction gain (R,), the quantitative per-
formance of the filters is judged to be “good”. As for the qualitative performance,
the more similar the DVV scatter diagram for the filtered signal is to that for
the original signal, the better the qualitative performance of the considered pre-
diction architecture.

For generality, we illustrate the usefulness of the proposed methodology for
both linear and nonlinear (neural networks) adaptive filters and their combina-
tions.

2 In this chapter, all the DVV tests are performed using 19 surrogate data realisations.
The reason for that is that with the increase in the number of surrogate data, DVV
test does not yield a much better result whereas the computational complexity is
much increased.

3 In fact, target variance (0*?) of the original data is plotted against the mean of the
target variance of 19 surrogate data, for all corresponding distances (%)4



4 Experimental Settings

To illustrate the effect of the chosen mode of processing (linear, nonlinear, etc.),
we have chosen a general hybrid architecture, which is shown to be able to
improve the overall quantitative performance, as compared to the performance of
single modules. In particular, it has been suggested that a cascaded combination
of a recurrent neural network (RNN) and finite infinitive response (FIR) filter can
simultaneously model the nonlinear and linear component of a signal [12]. The
nonlinear neural filter can model the nonlinearity and a portion of the linearity
within a signal, while the subsequent linear FIR filter models the remaining
linear part of the signal.

The nonlinear neural filters used in simulations were the dynamical percep-
tron (nonlinear FIR filter) trained by the nonlinear gradient descent algorithm
(NGD) and a recurrent perceptron, trained by the real time recursive learning
(RTRL) [13] algorithm. The linear filters considered were standard FIR filters
trained by least mean square (LMS) and recursive least squares (RLS) algo-
rithms.

The inputs were a benchmark linear AR(4) signal, given by

z(k) = 1.79x(k — 1) — 1.85x(k — 2) + 1.27z(k — 3)

—0.41a(k — 4) + n(k) (4)
where n(k) ~ N(0,1) and a benchmark nonlinear signal, the Narendra Model
Three, given by [14]

k-1

W =T
r(k)=179r(k—1)—1.85r(k —2)+ 1.27r(k — 3)
—041r(k —4) +n(k) (5)

+r3(k)

where n(k) ~ N(0,1). For these signals their DVV scatter diagrams are shown
as Figure 3(c) and 3(d), clearly indicating the linear nature of (4) (DVV scatter
diagram on the bisector line), and nonlinear nature of (5) (DVV scatter diagram
deviating from the bisector line).

4.1 Simulations

The first experiment was conducted for prediction of the linear benchmark signal
(4). The DVV scatter diagrams show the nonlinearity information about the
output of such filters. From Figure 4, in terms of preserving the nature of the
signal (linear in this case), both the nonlinear filters and hybrid filters performed
well on a linear AR(4) signal, indicated by the fact that all the DVV scatter
diagrams in Figure 4 lie on the bisector line. In terms of the prediction gain
R,, the NGD and RTRL performed similarly, and as expected, the hybrid filters
performed better than single nonlinear filters. The hybrid filter realised as a
cascaded combination of a dynamical perceptron trained by RTRL and FIR
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Fig. 4. Qualitative and quantitative comparison of the performance between nonlinear
neural and hybrid filters for a linear benchmark signal (4). The top panels denote the
DVYV scatter diagrams for single neural filters (feedforward and feedback), trained by
NGD and RTRL algorithm respectively. The bottom panel diagrams relate to hybrid
filters

filter trained by RLS gave the best performance, as illustrated in bottom right
diagram of Figure 4.

Figure 5 illustrates a similar experiment performed on prediction of a much
more complex benchmark nonlinear signal (5). From Figure 5, both nonlinear
filters trained by NGD and RTRL performed poorly on their own in terms of the
prediction gain. However, from the change of the nature of the original signal,
seen in Figure 3(d), they preserved the nature of the benchmark nonlinear signal
better than the hybrid filters, even though the quantitative gain R, for hybrid
filters was higher. For instance, the recurrent perceptron trained by the RTRL
exhibited worse quantitative performance but better qualitative performance. A
hybrid filter consisting of a combination of a dynamical perceptron trained by
NGD and an FIR filter trained by LMS, showed a considerable increase in gain,
however, the signal was considerably linearised as illustrated by the DVV scatter
diagram approaching the bisector line. The bottom right diagram in Figure 5
shows the performance of a hybrid filter consisting of a recurrent perceptron
trained by RTRL followed by a FIR filter trained by the RLS algorithm. This
case gave best balance between the quantitative and qualitative performance out
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Fig. 5. Qualitative and quantitative performance comparison of the performance be-
tween nonlinear neural and linear filters for a nonlinear benchmark signal (5). The
dotted line denotes the DVV scatter diagram for the original nonlinear benchmark
signal Eq.(5), whereas the solid line denotes that for the output of the filters.

of all the combinations of hybrid filters considered. The quantitative performance
gain for this combination was the second best of all the combinations, whereas
the nature of the signal was preserved reasonably well.

We now investigate whether exchanging the order of filters within a hybrid
filter will affect the overall performance. Given the highly nonlinear nature of
the problem, it is expected that the performances will be significantly different.
To this end we re-ran the experiments for the nonlinear benchmark signal. The
results of the experiments are shown in Figure 6.

Figure 6 confirms that exchanging the order of the modules within a hybrid
architecture does not provide the same performance, both quantitatively and
qualitatively. Indeed, the quantitative performance are considerably worse and
also the nature of the predicted signal changed significantly towards a linear one.
This can be explained in the following way. When a linear filter is placed at the
first stage of the hybrid filter, it linearise the input signal significantly and the
subsequent nonlinear filter will not be able to recover the lost information as the
system is not aware of presence of a nonlinear signal. However, if a nonlinear
filter is placed as the first module, it will capture the input signal nonlinearity
and inform the system that the upcoming signal is nonlinear in nature so that
the subsequent linear filter is able to refine the output.
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5 Online Nonlinearity Tracking Using Hybrid Filters

We have shown a novel framework of evaluating the qualitative performance
of adaptive filters. This is achieved based upon examining the change in signal
nature in terms of nonlinearity and determinism, which is considered an offline
method. It is natural to ask whether it is possible to track the system nonlinearity
online.

In [15] one such ‘online’ approach is considered which relies on parametric
modeling to effectively “identify” the signal in hand. Figure 7 shows an im-
plementation of this method which uses a third order Volterra filter (nonlinear
subfilter) and a linear subfilter trained by the normalised LMS (NLMS) algo-
rithm with a step size u = 0.008 to update the system parameters. The system
was fed with the signal y[k] obtained from

I
a;x[k — i] where I = 2 and ag = 0.5,a; = 0.25,a2 = 0.125  (6)

=0

F(u[k]; k) + n[k] (7)

N

y(k]

where z[k] are independent identically distributed and uniformly distributed over
the range [—0.5, 0.5] and n[k] ~ N(0,0.0026). The function F'(u[k]; k) varies with
the range of k as follows

u3[k], for 10000 < k < 20000
u?[k], for 30000 < k < 40000 (8)
u[k], elsewhere

F(ulk]; k) =

The signal y[k] can be seen in the first trace of Figure 7. The second and third
traces show the residual estimation errors of the optimal linear system and



Volterra system respectively. The final trace is the estimated degree of system
nonlinearity. Whilst these results show that this approach can detect changes in
nonlinearity and is not affected by the presence of noise, this may be largely due
to nature of the input signal being particularly suited to the Volterra model.
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Fig.7. NLMS with Volterra series

In this chapter, we propose to overcome this problem be making use of the
concept of convexity. A convex combination can be described as [16]

Az + (1 — A)y where A € [0,1] (9)

as illustrated on Figure 8. The point resulting from the convex combination of
x and y will lie somewhere on the line defined by z and y, between the two. The
benefits of using convex optimisation are threefold:

— The existence of the solution is guaranteed;
— The solution is unique;
— This facilitates the collaborative adaptive filtering approach

X AX+ (1-)Ny y

Fig. 8. Convexity

Intuitively, a convex combination of the output of two adaptive filters with
different dynamical characteristics ought to be able to “follow” the subfilter



with better performance, provided a suitable adaptation of A. Indeed, such a
hybrid filter has been proposed in [17,18] in a form that adaptively combines
the outputs of the subfilters based on their instantaneous output error. In [19],
this approach has demonstrated to yield considerable improvement in the steady
state and convergence capabilities of the resultant filter.

While previous applications of hybrid filters have focused on the improved
performance they can offer over the individual constituent filters, our approach
relies on the observation of the evolution of the so-called mixing parameter A
over time. For example, in the standard setting, A would vary so as to initially
favour the faster subfilter (learning) and finally, the filter with the best steady
state properties?.

In this section, we consider hybrid combinations of filters. The analysis of
A then provides insight into the nature of the signal under consideration. In
particular, we focus on quantifying the degree of “nonlinearity” in a signal. As
a subset of nonlinearity we also consider the degree of “sparsity”, as sparse
signals occur naturally in many real world applications. The benchmark signals
considered are linear (AR(4)) or nonlinear by design, whereas the real world
signals considered in this case are speech data.

5.1 Hybrid Adaptive Filter for Signal Modality Characterisation

Figure 9 shows a block diagram of a hybrid adaptive filter aimed at signal modal-
ity characterisation. In this Chapter, we focus on tracking the degree of nonlin-
earity in a signal by combining the outputs of a linear and a nonlinear subfilter
in a hybrid fashion. Following the approach from [17,19], the output of such a
structure was obtained as

y(k) = A(R)y1 (k) + [1 = A(k)] y2 (k) (10)

where y1 (k) = xT (k)w1 (k) and y2(k) = xT (k)wz(k) are the outputs of the two
subfilters, with respective weight vectors w{ (k) and wi (k) and where x(k) is
the common input vector. For simplicity, wi(k) and wa(k) are assumed to be
of equal length L = 10 and are adapted independently, using their own design
rules and depending on the property we aim at tracking. Parameter A(k) is a
mixing scalar parameter, which is adapted using a stochastic gradient rule that
minimises the quadratic cost function J(k) = e?(k) of the overall filter, where
e(k) is the output error given by e(k) = d(k) —y(k). Using LMS type adaptation
to minimise the error of the overall filter, the generic form the the A update can
be written as

Ak +1) = A(k) = px Vad (k) x2x) (11)

where py is the adaptation step-size of the hybrid filter. Using (10) and the
expression for the output error, the partial derivative of the cost function with
respect to A\(k) can be written as

Vad (B)xzamy = —e(®)[y1(k) = y2(k)] (12)

4 This differs from the traditional “search then converge” approach, since it caters for
potentially nonstationary data.
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Fig. 9. Block-diagram of a hybrid adaptive filter for nonlinearity tracking

Then equation (11) can be rewritten as
Ak +1) = A(k) + pae(k) [y (k) — ya(k)] (13)

To ensure the combination of adaptive filters remains a convex function, A was
kept in the range 0 < A(k) < 1. For this purpose, in [17] the authors used a
sigmoid function to bound A(k) in the range [0, 1]. Since, in order to determine
the changes in the modality of a signal, we are not interested in the overall
performance of the filter but in the variable A, the use of a sigmoid function
would interfere with the true values of A(k) and was therefore not used. Instead,
a hard limit on the set of allowed values for A was implemented.

5.2 Performance of the Combination on Benchmark Signals

In order to illustrate the operation of the convex combination aimed at signal
modality tracking, simulations were initially performed on a set of synthetic
signals made by alternating between blocks of linear and nonlinear data. 100
runs of independent trials were performed and averaged, in the one-step ahead
prediction setting. The linear signal used was a stable AR(4) process given by

x(k) = 1.792(k — 1) — 1.852(k — 2) + 1.27x(k — 3) — 0.41x(k — 4) + n(k) (14)



where n(k) ~ N(0,1) is white Gaussian noise (WGN). The benchmark nonlinear
input signal was [14]

_2?(k—1)(x(k — 1) +2.5)
") = =1 T2k =22

For the experiments, the linear adaptive filter was the e-NLMS (Normalised Least
Mean Square) while the nonlinear filter was the Normalised Nonlinear Gradient
Descent (NNGD) [20]. NNGD and NLMS were used as opposed to the standard
NGD and LMS algorithms in order to overcome the issue of high dependence
of the convergence of the individual subfilters and hence of the combination
on input signal statistics. Furthermore, since these subfilters exhibit a rate of
convergence that is potentially faster, this alternative also increased the speed
of adaptation of .

The nonlinearity at the output of the nonlinear filter was the logistic sigmoid
function, given by

+n(k—1) (15)

®(z) zeR (16)

C14e B
with a slope of 8 = 1. Intuitively, we expect the linear filter to take over (i.e.
A — 0) when the modality of the input signal is more linear while the output
is expected to follow the more nonlinear filter (i.e. A — 1) when the input is
nonlinear [see Fig. 9].

Figure 10 shows the evolution of A at the output of the hybrid combination
from Figure 9 for a signal alternating between linear and nonlinear every 200
and 100 samples respectively. The combination proved robust to changes in step-
sizes within the combination and was always capable of tracking the degree of
nonlinearity in the input signal, provided unrys = unnvap and provided the
step-size values were such that both subfilters converged.

Having demonstrated the ability of the combination at tracking the degree
of nonlinearity in synthetically generated data, we next perform simulations on
real-world speech data.

5.3 Tracking the degree of nonlinearity in speech data

In this section, we aim at giving a flavour of the potential of the hybrid adaptive
filtering approach on speech data. The area of speech modality characterisation
is only emerging and in fact, only little is known about the nature of speech.
Recently, much effort has been devised in developing accurate models for the
speech production system and for characterising the modality of speech. It is
believed that the accurate knowledge of speech characteristics will lead signifi-
cant advances in several areas of speech processing, including speech coding and
speech synthesis.

Typically, the vocal tract® is modeled as an all-pole filter, i.e. using a linear
difference equation. This is mainly due to the solid theory underlying linear sys-

5 The vocal tract is the cavity where sound that is produced at the sound source is
filtered. It consist of the laryngeal cavity, the pharynx, the oral and nasal cavities;
it starts at the vocal folds (vocal cords).
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Fig. 10. Mixing parameter A at the output of the hybrid combination from Figure 9,
with px = 20, for input signal nature alternating between linear (14) and nonlinear
(15).

tems and to the corresponding decrease in computational complexity. However,
the physical nature of the vocal tract is itself an indication of the potentially
nonlinear nature of the radiated speech. In fact, several studies have suggested
that linear models do not sufficiently model the human vocal tract [21, 22].

Due to its nonstationary nature, the characterisation of speech is a complex
task and much research has been done recently to study the nonlinear properties
of speech and to find an efficient model for the speech signal. These studies
have typically been based on a classification between vowels and consonants or
between voiced and unvoiced sounds®. It is known that all vowels and certain
consonants are voiced, i.e. highly periodic in nature with a periodic excitation
source. In the case of unvoiced consonants, the folds may be completely open
(e.g. for the /s/, /sh/ and /f/ sounds) or partially open (e.g. for /h/ sound),
resulting in a noise like waveform [23-25].

In [26], Kubin shows that there are several nonlinearities in the human vo-
cal tract, whereas he demonstrates that linear autoregressive models are fully
adequate for unvoiced speech. In [27-29] chaotic behaviour is found in voiced
sounds such as vowels and nasals like /n/ and /m/. In [30], the speech signal
is modeled as a chaotic process. Finally, hybrid methods combining linear and
nonlinear structures have previously been applied to speech processing [31-33].

While the majority of the studies so far have suggested a nonlinear nature of
voiced speech, the form of fundamental nonlinearity is still unknown. In [34], it
is suggested that speech may contain different types of linear /nonlinear charac-
teristics, and that for example, vowels may be modeled by either chaotic features

6 A sound is referred to as being voiced when the vocal folds are vibrating, whereas
it is voiceless (or unvoiced) in a contrary case.



or types of higher order nonlinear features, while consonants may be modeled
by random processes.

For the simulations, speech signals S1 and S3 from [35] were first analysed.
Finally, a randomly selected recording from the APLAWD database [36] was
considered, together with the corresponding laryngograph” signal. All amplitude
signals were standardised so that the amplitude range was between [—0.5,0.5].
For generality, the values of step-sizes were kept as in the simulations on station-
ary data, namely unrays = unnvgp = 0.4 and p) was varied according to the
aim of the experiment (larger p used for demonstrating the correlation between
the laryngograph signal and the evolution of A). The nonlinearity used in the
complex NNGD (CNNGD) algorithm was the hyperbolic tanh function given by

sinhz  exp® —exp™™
b3 — tanh — — R 17
(z) = tanh(z) coshz  exp®+exp @’ Te (17)

Prediction was performed in the one-step ahead setting (short-term prediction).
One may in the future perform simulations using long-term prediction, i.e. using
a prediction delay of one pitch period, as in [37].

In order to investigate the potential of using hybrid filters for the purpose of
determining the degree of nonlinearity and sparsity in a speech waveform, the
combination of CNLMS and CNNGD (complex linear and nonlinear subfilters)
and NLMS and SSLMS (signed sparse LMS) (following the approach from [38])
were both fed with the speech waveforms S1 and S3 in turn. The first trace from
Figures 11 and 12 shows the speech waveform while the second and third traces
respectively show the corresponding variations of A for tracking the degree of
nonlinearity and sparsity in the waveform. In the second trace, and as above, a
value of A close to 1 indicated the predominantly nonlinear nature of speech and
vice versa for A — 0. Finally, in the third trace, and for consistency, a A\ — 1
showed the predominantly sparse nature of the waveform.

From the figures, the expected correlation between nonlinearity and sparsity
is confirmed. We note that certain parts of a speech signal are better modeled us-
ing nonlinear structures (A — 1), while for others, linear structures are sufficient
(A — 0). Furthermore, voiced speech appears to be indicated by regions where
A exhibits a “spiky” behaviour. From Figure 11, it can be noticed that the noise
like sounds /z/ (around samples 2800-3200) and /s/ (around samples 4100-4200)
are linear which agree with previous findings in the field. From Figure 12, it can
be inferred that highly voiced sounds such as /a/ in “trying” is more nonlinear.

5.4 Correlation between laryngograph signal and the variation of A

In this section, we aim at exploring the relationship between the variation of
A and the laryngograph waveform (Lx). For this purpose, simulations are per-
formed on the randomly selected speech waveform from the APLAWD database

" A laryngograph monitors vocal fold closure by measuring variations in the conduc-
tance between a transmitting electrode delivering a high frequency signal to the neck
on one side of the larynx and a receiving electrode on the other side of the larynx.
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Fig. 11. Speech signal S1 and corresponding variation of A for determining the degree
of “nonlinearity” and “sparsity”.

[36]: the letter “m” read by a male speaker. Figure 13 shows the speech and
corresponding laryngograph waveforms and the evolution of A at the output of
the hybrid combination of CNLMS and CNNGD. From this figure, it is clear
that there is some correlation between the two waveforms during certain peri-
ods of voiced speech. In particular, it appears that sharp transitions in A and
in the derivative of the Lx waveform (indicating glottal opening instant) oc-
cur simultaneously (the delay between the two waveforms is due to the larynx-
to-microphone delay and estimated in [39] to be of approximately 0.95ms, i.e.
20 kHz x 0.95ms = 19samples). This does not necessarily imply that the hybrid
filter is capable of detecting glottal opening instants, but that there is a clear
relationship between the two signals which requires further investigation.
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