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ABSTRACT constituent subfilters but also to improve the overall ditgbi
of the filter, as should one subfilter fail to converge the k/br
filter tracks the output of the second subfilter [3, 4].

Figure 2 shows the block diagram of a hybrid filter con-
sisting of two adaptive subfilters combined in a convex man-
ner. At every time instank, the output of the hybrid fil-
ter, y(k), is an adaptive convex combination of the output of
he first subfiltery; (k) and the output of the second subfilter
(k), and is given by

A method for extracting information (or knowledge) about
the nature of a signal is presented, this is achieved byitvgck
the dynamics of the mixing parameter within a hybrid filter
rather than the actual filter performance. Implementatains
the hybrid filter for tracking the nonlinearity and the sjigrs
of a signal are illustrated and simulations on benchmark sy
thetic data in a prediction configuration support the anslys
It is then shown that by combining the information obtained”?
from both hybrid filters it is possible to use this method to _ o
gain a more complete understanding of the nature of signals y(k) = ARy (k) + (1 = Ak)) ya k). @
and changes in signal modality. The outputs of the two subfilters are dependent on the algo-
Index Terms— adaptive filters, collaborative signal pro- "thms used to train the subfilters based on the common input
cessing, distributed signal processing, signal modaligre ~ VeCtorx(k) = [z1(k), ..., zx(k)]" for filters of lengthN.
acterisation The outputs are given by (k) = x'(k)wy (k) andy, (k) =
xT'(k)ws(k) with corresponding weight vectors, (k) =
[’le(I{/’), ey wl,N(k)]T ande(k:) = [wg’l(k), . 7’LU27N(]<5)IT,
where each subfilter is updated by its own er¢ofk) and
(k), using a common desired sign#k).

1. INTRODUCTION

Hybrid filters have been previously introduced to improve th 2
performance of adaptive filters, illustrating that by cbta d(k)
rative learning using a combination of subfilters of differe er(F)
characteristics it is possible to achieve better overatiope

mance than that obtained from any of the individual subfil- ,
ters [1]. One of the keys to designing the hybrid filter is the .
method in which the subfilters are combined, one simple but nh

effective method is to combine the outputs of the subfilters i (k)
a convex manner. Convexity can be described as [2]

Az + (1 — Ny wherel € [0, 1] (1)

For z andy being two points on a line, as shown in Fig. 1,
their convex mixture (1) will lie on the same line between
andy. By using a convex combination of adaptive filters it Fig. 2. Hybrid Filter Structure

Hybrid filters using convex combinations of two subfilters

X AX+(1-N)y y both being trained by the same algorithm have been shown to
perform well in stationary environments and to always per-
Fig. 1. Convex Combination form at least as well as the better of the two subfilters [3].

An alternative to this using a combination of two subfilters
is possible to not only to obtain the best properties from thérained by two different algorithms has shown that by cdrefu



selection of the training algorithms it is possible to take t Nonlinearity

desired properties of both subfilters to give a better oleral ‘fy

performance [4]. @ 5
By understanding that the output of the hybrid filter will '

always be dominated by the better performing of the two sub-

filters, it is natural to assume that this information can be o 7

tained by observing the adaptive mixing parameteiith

this in mind we show that it is possible to design a hybrid

filter which uses subfilters trained by algorithms with known »)

different properties and that the behaviour\afvithin such a ? . ?

combination will reveal not only which filter is currentlygi Linearity

ing the best response to the input signal, but also that with Determinism Stochasticity

appropriately chosen subfilters the responsg oén then be

used to reveal knowledge about the nature of the input signatiy. 3. Deterministic vs. stochastic nature and linear vs. non-
linear nature of real world signals

NARMA

ARMA

2. SIGNAL CHARACTERISATION
improvement in performance, our approach relies on observ-

Signal characterisation is a key topic of multidiscipliyar

research, but its applications in signal processing and m N9 the ev_olutlor_1 of the mixing parametﬁ_r As such Fhe hy—_
chine learning have only recently become apparent. Th rid filter is designed to have two constituent subfiltershwit

range of signals spanned by just the characteristics of nor?—l"ﬁ'c'emIy @fferent characterlistlcs SO .that.When the ingx
linearity and stochasticity are shown in Fig. 3 (modiﬁedparametetﬁ\ is observed we gain an insight into the nature of

from [5]) and whilst there are some small areas which aréhe signals. In addition through the evolution of the mixing

well understood these tend to be extremes in nature, such %@;z?;iﬁg Ele\;l]e can also track any changes in the modality of

extremely nonlinear, deterministic signals (chaos), oedr ! o ) o
and stochastic signals represented by autoregressivengnovi ~ Using the hybrid filter structure as illustrated in Fig. Z th
averages (ARMA). These extremes however do not cover thgPnvex mixing parametex(k) is updated based on minimisa-
majority of real world signals, and the presence of factordion of the quadratic cost functiafi(k) = 3¢ (k). Although

such as noise or uncertainty leads to most real world signal§ order to preserve the inherent characteristics of the con
being represented in the areas (a), (b), (c) or '?". Know_stltuent_subfllters, which are t_he basis of our approach, and
ing more about the nature of the signal being processed c&$ Previously stated the subfilters are updated based on the
provide valuable information in many areas such health offTors generated based on their individual algorithmsptie
weather conditions, it can also provide prior knowledge for@meter\ is updated based on the overall eregk). Using

the selection of appropriate models as use of incorrect sy$Pe following gradient adaptation

tems can lead to problems in their use or training and in some

situations (such as the use of nonlinear model in absence of Ak +1) = ME) — paVaE (k) p=ak) ©))
nonlinearity) can add extra unnecessary computational com

plexity. Many existing approaches to signal charactegsat whereu, is the adaptation step-size, from (2) and (3), an LMS
are based upon hypothesis testing, describing the signal tgpe adaptation for th& update can be obtained as

a statistical manner [6]. There is however a need for on-

line approaches to signal characterisation which can ngt on o Oe2(k
pix Oe* (k)
identify the nature of a signal but also track any changes in Ak +1) = k) — 2 oAk
signal modality. Some disadvantages of existing appraache _
are due to their tendency to rely on underlying models [7], = Ak) + pre(k) (yr (k) —v2(k)). (4)

making their application somewhat limited. To overcome

these limitations we propose a much more flexible methodf Order to preserve the convexity of the update it is esaenti
based on collaborative adaptive filtering. that the value of\ remains within the rangeé < A(k) < 1

and to this effect a hard bound on the values whichan
take was implemented. It is worth noting at this point that
3. HYBRID FILTERS FOR SIGNAL although alternative methods have been used to preserve the
CHARACTERISATION convexity of the function and have been proven to give good
results (such as the sigmoid function used in [3]) this is not
Whilst previous implementations of hybrid filters based onappropriate in our case as our primary interest is not in the
convex combinations have focused mainly on the quantitivéilter output but in the behaviour of.



3.1. Convergence and Computational Complexity where the step-size parameter of the NLMS filterg is ;s

Providing either one or both of th nstituent subfilt ande is the regularisation term. In the case of the NNGD
0 g elther one or both ot the constituent SUBTIEN-Co ®(-) represents a nonlinear activation function &na con-

verge due to the convex nature of the hybrid filter it too W'"stant representing the ignored higher terms, for simutatio

also converge and will always perform at least as well a : :
. . urposes these wetenh(-) and unity respectively.
the better of the two subfilters [3]. The computational com-?) P nh(-) yresp y

plexity of the hybrid filter is naturally a combination of the
computational complexities of the algorithms used to updat4.2. Sparse Hybrid Filter
the constituent subfilters. The additional complexity iiesp
for the update of the mixing parametgris minimal requir-
ing only an additional 4 multiplications and 5 additions and
only becomes relevant if the overall weight updaték) =
Ak)wr (k) + (1 — A(k))wo(k) is also of interest.

To track the changes in the sparseness of a signal the subfil-
ters of the hybrid filter were trained by the signed sparse LMS
(SSLMS) [11] and the NLMS, the NLMS was selected for the
nonsparse filter as it was found to be a better choice than the
LMS due to its faster convergence speeds allowing it to adapt
quickly to changes in the input signal (preventing the spars
4. TRACKING CHANGES IN SIGNAL MODALITY filter from dominating). The output of the NLMS trained sub-

, . o filter is given as above (5) and the output of the correspandin
In order to illustrate the the capability of the hybrid filter 55| pmS trained subfilteg., .+ (k) is given by
track changes in signal modality example hybrid filters gsin

coml_binations of supfilte;s suite% to Iigea_r inpOLIJts and eithe Yssins(k) = xT (B)Wespars (k)
nonlinear or sparse inputs have been designed. eosnrrs(k) = d(k) = yosrrrs(k)

WSSLIWS(k + 1) = WSSLAJS(k)+

4.1. Nonlinear Hybrid filter
Hu (‘WSSLMs(k” + 5) eSSLJWS(k)X(k) (7)

For the nonlinear hybrid filter, the constituent finite imgeil
response (FIR) subfilters (one linear and the other saturati imulati
type nonlinear) were trained by the normalised least meaf]i'a' Simulations

square (NLMS) algorithm [9] and the normalised nonlineargy eyaluating the resultant hybrid filters in an adaptive one
gradient descent (NNGD) algorithm [10]. These two algo-step ahead prediction setting with the length of the adaptiv
rithms were chosen to train the subfilters as the NLMS ijjters set toN = 10, it is possible to illustrate the ability of
widely used and known for its robustness and excellent gteadpe hybrid filter to identify the modality of a signal of insst.
state properties whereas the NNGD has faster convergenge pehaviour of\ has been investigated for benchmark syn-
and better tracking capabilities making it more suited t0-n0 thetic linear, nonlinear and sparse inputs. Values ofere
linear inputs than the NLMS. By exploiting these properties ayeraged over a set of 100 independent simulation runs, for

is possible to show that the hybrid filter has excellent iregk the inputs described by a stable linear AR(4) process:
capabilities for signals.

The output of the NLMS trained subfiltgf . 1/s is gen- x(k) = 1.792(k — 1) — 1.85z(k — 2) + 1.27x(k — 3)
erated from [9] —0.412(k — 4) + n(k) ®)
yNLMS(k) = XT(k)WNLAIS(k) . .
a benchmark nonlinear signal [12]:
eNLMs(k') = d(k) - yNLj\ls(k) g [ ]

WNLJWS(k + 1) = WNLMS(k)+ x(k) 3
z(k+1)= ————— +n’(k) 9)
HKNLMms eNLMS(k)X(k) (5) 1+ 3?2(]{3)

[x(k)[I3 + (k) o .
) ) ~and a benchmark sparse distribution [11], whe(é) is a
andyyyep is the corresponding output of the NNGD trained zerg mean, unit variance white Gaussian process. The convex

subfilter given by [10] combinations were presented with an input signal which al-
Ynwen (k) = ® (net(k)) terngted from linear (8) to nonlinear (9) then linear to spar
- The input signal was alternated every 100 samples and the
net(k) = x" (k)Wynan (k) corresponding dynamics of the mixing parametgfg) are
enxnap (k) = d(k) — ynvnen(k) shown in Fig. 4, where a value of = 1 corresponds to the
Wynon(k+1) = Wynep (k)+ output of the NNGD/SSLMS trained subfilters and a value of

/ A = 0 corresponds to the output of the NLMS trained subfil-
n(k)®" (net(k)) exnen (k)% (k) ters. It is clear from Fig. 4 that the value afadapts to be
1 (6) dominated by the filter most suited to the current dynamics of

n(k) =
C + (@ (net(k))] [|x(k)|13 the input signal. As expected (as sparsity can be considered




subset of nonlinearity) the nonlinear hybrid filter obtasite-  the sparse and nonlinear filter behaved differently. Thisae

ilar results for both the nonlinear and sparse inputs, wagere sentation is similar to the phase space representatioraimsch

the sparse hybrid filter shows a marked difference in leviels atheory, and allows for the signal modality characterisatm

sparsity for the same inputs. be considered within the framework of nonlinear dynamics.
These results highlight the use of this technique in bugdin
complete understanding of the nature of signals and has nat-

} } } ural extensions both by using third dimensions (in this case
combining the sparse and nonlinear filters in a hybrid filter)
< 0.8 and also by using alternative filters to explore differeghsi
< characteristics.
[
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Fig. 4. Evolution of the mixing parameters for hybrid fil- 0.2r
ters combining NNGD and NLMS subfilters (solid line) and
SSLMS and NLMS (broken line) for an input signal alternat-

. . . . Y ‘ ‘ ‘ ‘
ing from linear to nonlinear and linear to sparse every 10( Linear © 0.2 0.4 0.6 0.8 1

Nonlinear
samples

Fig. 5. Comparison of the evolution of the mixing parameters
5. TRACKING MULTIPLE CHANGES IN SIGNAL for linear/nonlinear and sparse/nonsparse for an inputasig
MODALITY alternating every 100 samples. Solid line: nonlinear sesti
broken line: linear sections, dotted line: sparse sections

These algorithms have also been shown to give good results
not only on synthetically generated data but also real world To demonstrate the application of this method to real-
data in the form of EEG data from epileptic seizures [13] andvorld data, two sets of EEG data showing the onset of epilep-
speech data [14]. It is natural to consider whether these rdiC seizures were analysed. Figure 6 shows the EEG data,
sults can therefore be combined to allow us to track not onlglong with the corresponding evolution of the mixing param-
changes in nonlinearity but also at the same time changes ffersA for both hybrid filters and the resultant changes in
sparsity, this would prove of particular interest as charige nonlinearity against sparsity. These results show thaptoe
the sparseness of a signal can be considered to be a subsepesed approach can not only effectively detect changes in
the changes in the nonlinearity of a signal. Intuitivelyrthe the nature of the EEG signals which can be very difficult to
should be a certain degree of correlation between the ckang@achieve otherwise, but also identify which are changesin no
in the evolution of the mixing parameteksof the sparse hy- linearity and which are also changes in sparsity.
brid filter and that of the nonlinear hybrid filter.

Figure 5 shows the response bffor the both the non- 6. CONCLUSIONS
linear hybrid filter and the sparse hybrid filter for the alter
nating input signal previously described, with the solite6  We have highlighted that as well as offering improved per-
representing the linear sections, the broken lines theimonl formance it is also possible to use convex hybrid filters to
ear sections and the dotted lines the sparse sections. d-or tjain information and track changes in signal modality. This
linear sections although the evolution of the twe do not is achieved through exploiting the different performanae c
follow the same path, there is an obvious correlation betweepabilities of key adaptive filtering algorithms and traakihe
them and the difference in responses can be attributed to tlwolution of the adaptive convex mixing paramekewithin
different learning rates of the subfilters of each hybrigfilt the hybrid filter structure. We have also presented a method
For the nonlinear and the sparse signals, however, theitgparsby which it is possible to build on this information by com-
and saturation type nonlinearity are different phenomerh a bining the responses of several mixing parameters to ohtain
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Fig. 6. Top panels: EEG epileptic seizure data. Middle pan-

els: corresponding evolution ofsolid line: nonlinear hybrid
filter, broken line: sparse hybrid filter. Bottom panels camp
ison of nonlinearity and sparsity, evolution over time ttay

from coordinates (1,1)

more complete understanding of the nature of signals.
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