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ABSTRACT

A method for extracting information (or knowledge) about
the nature of a signal is presented, this is achieved by tracking
the dynamics of the mixing parameter within a hybrid filter
rather than the actual filter performance. Implementationsof
the hybrid filter for tracking the nonlinearity and the sparsity
of a signal are illustrated and simulations on benchmark syn-
thetic data in a prediction configuration support the analysis.
It is then shown that by combining the information obtained
from both hybrid filters it is possible to use this method to
gain a more complete understanding of the nature of signals
and changes in signal modality.

Index Terms— adaptive filters, collaborative signal pro-
cessing, distributed signal processing, signal modality char-
acterisation

1. INTRODUCTION

Hybrid filters have been previously introduced to improve the
performance of adaptive filters, illustrating that by collabo-
rative learning using a combination of subfilters of different
characteristics it is possible to achieve better overall perfor-
mance than that obtained from any of the individual subfil-
ters [1]. One of the keys to designing the hybrid filter is the
method in which the subfilters are combined, one simple but
effective method is to combine the outputs of the subfilters in
a convex manner. Convexity can be described as [2]

λx + (1 − λ)y whereλ ∈ [0, 1] (1)

For x andy being two points on a line, as shown in Fig. 1,
their convex mixture (1) will lie on the same line betweenx

andy. By using a convex combination of adaptive filters it

yλx + (1−  )yλx

Fig. 1. Convex Combination

is possible to not only to obtain the best properties from the

constituent subfilters but also to improve the overall stability
of the filter, as should one subfilter fail to converge the hybrid
filter tracks the output of the second subfilter [3, 4].

Figure 2 shows the block diagram of a hybrid filter con-
sisting of two adaptive subfilters combined in a convex man-
ner. At every time instantk, the output of the hybrid fil-
ter, y(k), is an adaptive convex combination of the output of
the first subfiltery1(k) and the output of the second subfilter
y2(k), and is given by

y(k) = λ(k)y1(k) + (1 − λ(k)) y2(k). (2)

The outputs of the two subfilters are dependent on the algo-
rithms used to train the subfilters based on the common input
vectorx(k) = [x1(k), . . . , xN (k)]T for filters of lengthN .
The outputs are given byy1(k) = x

T (k)w1(k) andy2(k) =
x

T (k)w2(k) with corresponding weight vectorsw1(k) =
[w1,1(k), . . . , w1,N (k)]T andw2(k) = [w2,1(k), . . . , w2,N (k)]T,
where each subfilter is updated by its own errore1(k) and
e2(k), using a common desired signald(k).
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Fig. 2. Hybrid Filter Structure

Hybrid filters using convex combinations of two subfilters
both being trained by the same algorithm have been shown to
perform well in stationary environments and to always per-
form at least as well as the better of the two subfilters [3].
An alternative to this using a combination of two subfilters
trained by two different algorithms has shown that by careful



selection of the training algorithms it is possible to take the
desired properties of both subfilters to give a better overall
performance [4].

By understanding that the output of the hybrid filter will
always be dominated by the better performing of the two sub-
filters, it is natural to assume that this information can be ob-
tained by observing the adaptive mixing parameterλ. With
this in mind we show that it is possible to design a hybrid
filter which uses subfilters trained by algorithms with known
different properties and that the behaviour ofλ within such a
combination will reveal not only which filter is currently giv-
ing the best response to the input signal, but also that with
appropriately chosen subfilters the response ofλ can then be
used to reveal knowledge about the nature of the input signal.

2. SIGNAL CHARACTERISATION

Signal characterisation is a key topic of multidisciplinary
research, but its applications in signal processing and ma-
chine learning have only recently become apparent. The
range of signals spanned by just the characteristics of non-
linearity and stochasticity are shown in Fig. 3 (modified
from [5]) and whilst there are some small areas which are
well understood these tend to be extremes in nature, such as
extremely nonlinear, deterministic signals (chaos), or linear
and stochastic signals represented by autoregressive moving
averages (ARMA). These extremes however do not cover the
majority of real world signals, and the presence of factors
such as noise or uncertainty leads to most real world signals
being represented in the areas (a), (b), (c) or ’?’. Know-
ing more about the nature of the signal being processed can
provide valuable information in many areas such health or
weather conditions, it can also provide prior knowledge for
the selection of appropriate models as use of incorrect sys-
tems can lead to problems in their use or training and in some
situations (such as the use of nonlinear model in absence of
nonlinearity) can add extra unnecessary computational com-
plexity. Many existing approaches to signal characterisation
are based upon hypothesis testing, describing the signal in
a statistical manner [6]. There is however a need for on-
line approaches to signal characterisation which can not only
identify the nature of a signal but also track any changes in
signal modality. Some disadvantages of existing approaches
are due to their tendency to rely on underlying models [7],
making their application somewhat limited. To overcome
these limitations we propose a much more flexible method
based on collaborative adaptive filtering.

3. HYBRID FILTERS FOR SIGNAL
CHARACTERISATION

Whilst previous implementations of hybrid filters based on
convex combinations have focused mainly on the quantitive

Determinism

Nonlinearity

Linearity

Chaos

ARMA

(a)

(b)

(c)

? ?

?
?

? ??

?

NARMA

Stochasticity

Fig. 3. Deterministic vs. stochastic nature and linear vs. non-
linear nature of real world signals

improvement in performance, our approach relies on observ-
ing the evolution of the mixing parameterλ. As such the hy-
brid filter is designed to have two constituent subfilters with
sufficiently different characteristics so that when the mixing
parameterλ is observed we gain an insight into the nature of
the signals. In addition through the evolution of the mixing
parameter, we can also track any changes in the modality of
the signals [8].

Using the hybrid filter structure as illustrated in Fig. 2, the
convex mixing parameterλ(k) is updated based on minimisa-
tion of the quadratic cost functionE(k) = 1

2e2(k). Although
in order to preserve the inherent characteristics of the con-
stituent subfilters, which are the basis of our approach, and
as previously stated the subfilters are updated based on the
errors generated based on their individual algorithms, thepa-
rameterλ is updated based on the overall errore(k). Using
the following gradient adaptation

λ(k + 1) = λ(k) − µλ∇λE(k)|λ=λ(k), (3)

whereµλ is the adaptation step-size, from (2) and (3), an LMS
type adaptation for theλ update can be obtained as

λ(k + 1) = λ(k) −
µλ

2

∂e2(k)

∂λ(k)

= λ(k) + µλe(k)(y1(k) − y2(k)). (4)

In order to preserve the convexity of the update it is essential
that the value ofλ remains within the range0 ≤ λ(k) ≤ 1
and to this effect a hard bound on the values whichλ can
take was implemented. It is worth noting at this point that
although alternative methods have been used to preserve the
convexity of the function and have been proven to give good
results (such as the sigmoid function used in [3]) this is not
appropriate in our case as our primary interest is not in the
filter output but in the behaviour ofλ.



3.1. Convergence and Computational Complexity

Providing either one or both of the constituent subfilters con-
verge due to the convex nature of the hybrid filter it too will
also converge and will always perform at least as well as
the better of the two subfilters [3]. The computational com-
plexity of the hybrid filter is naturally a combination of the
computational complexities of the algorithms used to update
the constituent subfilters. The additional complexity required
for the update of the mixing parameterλ is minimal requir-
ing only an additional 4 multiplications and 5 additions and
only becomes relevant if the overall weight updatew(k) =
λ(k)w1(k) + (1 − λ(k))w2(k) is also of interest.

4. TRACKING CHANGES IN SIGNAL MODALITY

In order to illustrate the the capability of the hybrid filterto
track changes in signal modality example hybrid filters using
combinations of subfilters suited to linear inputs and either
nonlinear or sparse inputs have been designed.

4.1. Nonlinear Hybrid filter

For the nonlinear hybrid filter, the constituent finite impulse
response (FIR) subfilters (one linear and the other saturation
type nonlinear) were trained by the normalised least mean
square (NLMS) algorithm [9] and the normalised nonlinear
gradient descent (NNGD) algorithm [10]. These two algo-
rithms were chosen to train the subfilters as the NLMS is
widely used and known for its robustness and excellent steady
state properties whereas the NNGD has faster convergence
and better tracking capabilities making it more suited to non-
linear inputs than the NLMS. By exploiting these propertiesit
is possible to show that the hybrid filter has excellent tracking
capabilities for signals.

The output of the NLMS trained subfilteryNLMS is gen-
erated from [9]

yNLMS(k) = x
T (k)wNLMS(k)

eNLMS(k) = d(k) − yNLMS(k)

wNLMS(k + 1) = wNLMS(k)+
µNLMS

‖x(k)‖2
2 + ε(k)

eNLMS(k)x(k) (5)

andyNNGD is the corresponding output of the NNGD trained
subfilter given by [10]

yNNGD(k) = Φ (net(k))

net(k) = x
T (k)wNNGD(k)

eNNGD(k) = d(k) − yNNGD(k)

wNNGD(k + 1) = wNNGD(k)+

η(k)Φ′ (net(k)) eNNGD(k)x(k)

η(k) =
1

C + [Φ′ (net(k))] ‖x(k)‖2
2

(6)

where the step-size parameter of the NLMS filters isµNLMS

and ε is the regularisation term. In the case of the NNGD
Φ(·) represents a nonlinear activation function andC a con-
stant representing the ignored higher terms, for simulation
purposes these weretanh(·) and unity respectively.

4.2. Sparse Hybrid Filter

To track the changes in the sparseness of a signal the subfil-
ters of the hybrid filter were trained by the signed sparse LMS
(SSLMS) [11] and the NLMS, the NLMS was selected for the
nonsparse filter as it was found to be a better choice than the
LMS due to its faster convergence speeds allowing it to adapt
quickly to changes in the input signal (preventing the sparse
filter from dominating). The output of the NLMS trained sub-
filter is given as above (5) and the output of the corresponding
SSLMS trained subfilterySSLMS(k) is given by

ySSLMS(k) = x
T (k)wSSLMS(k)

eSSLMS(k) = d(k) − ySSLMS(k)

wSSLMS(k + 1) = wSSLMS(k)+

µ (|wSSLMS(k)| + ε) eSSLMS(k)x(k) (7)

4.3. Simulations

By evaluating the resultant hybrid filters in an adaptive one
step ahead prediction setting with the length of the adaptive
filters set toN = 10, it is possible to illustrate the ability of
the hybrid filter to identify the modality of a signal of interest.
The behaviour ofλ has been investigated for benchmark syn-
thetic linear, nonlinear and sparse inputs. Values ofλ were
averaged over a set of 100 independent simulation runs, for
the inputs described by a stable linear AR(4) process:

x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k − 3)

− 0.41x(k − 4) + n(k) (8)

a benchmark nonlinear signal [12]:

x(k + 1) =
x(k)

1 + x2(k)
+ n3(k) (9)

and a benchmark sparse distribution [11], wheren(k) is a
zero mean, unit variance white Gaussian process. The convex
combinations were presented with an input signal which al-
ternated from linear (8) to nonlinear (9) then linear to sparse.
The input signal was alternated every 100 samples and the
corresponding dynamics of the mixing parametersλ(k) are
shown in Fig. 4, where a value ofλ = 1 corresponds to the
output of the NNGD/SSLMS trained subfilters and a value of
λ = 0 corresponds to the output of the NLMS trained subfil-
ters. It is clear from Fig. 4 that the value ofλ adapts to be
dominated by the filter most suited to the current dynamics of
the input signal. As expected (as sparsity can be considereda



subset of nonlinearity) the nonlinear hybrid filter obtainssim-
ilar results for both the nonlinear and sparse inputs, whereas
the sparse hybrid filter shows a marked difference in levels of
sparsity for the same inputs.
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Fig. 4. Evolution of the mixing parametersλ for hybrid fil-
ters combining NNGD and NLMS subfilters (solid line) and
SSLMS and NLMS (broken line) for an input signal alternat-
ing from linear to nonlinear and linear to sparse every 100
samples

5. TRACKING MULTIPLE CHANGES IN SIGNAL
MODALITY

These algorithms have also been shown to give good results
not only on synthetically generated data but also real world
data in the form of EEG data from epileptic seizures [13] and
speech data [14]. It is natural to consider whether these re-
sults can therefore be combined to allow us to track not only
changes in nonlinearity but also at the same time changes in
sparsity, this would prove of particular interest as changes in
the sparseness of a signal can be considered to be a subset of
the changes in the nonlinearity of a signal. Intuitively there
should be a certain degree of correlation between the changes
in the evolution of the mixing parametersλ of the sparse hy-
brid filter and that of the nonlinear hybrid filter.

Figure 5 shows the response ofλ for the both the non-
linear hybrid filter and the sparse hybrid filter for the alter-
nating input signal previously described, with the solid lines
representing the linear sections, the broken lines the nonlin-
ear sections and the dotted lines the sparse sections. For the
linear sections although the evolution of the twoλs do not
follow the same path, there is an obvious correlation between
them and the difference in responses can be attributed to the
different learning rates of the subfilters of each hybrid filter.
For the nonlinear and the sparse signals, however, the sparsity
and saturation type nonlinearity are different phenomena and

the sparse and nonlinear filter behaved differently. This repre-
sentation is similar to the phase space representation in chaos
theory, and allows for the signal modality characterisation to
be considered within the framework of nonlinear dynamics.
These results highlight the use of this technique in building a
complete understanding of the nature of signals and has nat-
ural extensions both by using third dimensions (in this case
combining the sparse and nonlinear filters in a hybrid filter)
and also by using alternative filters to explore different signal
characteristics.
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Fig. 5. Comparison of the evolution of the mixing parameters
for linear/nonlinear and sparse/nonsparse for an input signal
alternating every 100 samples. Solid line: nonlinear sections,
broken line: linear sections, dotted line: sparse sections

To demonstrate the application of this method to real-
world data, two sets of EEG data showing the onset of epilep-
tic seizures were analysed. Figure 6 shows the EEG data,
along with the corresponding evolution of the mixing param-
etersλ for both hybrid filters and the resultant changes in
nonlinearity against sparsity. These results show that thepro-
posed approach can not only effectively detect changes in
the nature of the EEG signals which can be very difficult to
achieve otherwise, but also identify which are changes in non-
linearity and which are also changes in sparsity.

6. CONCLUSIONS

We have highlighted that as well as offering improved per-
formance it is also possible to use convex hybrid filters to
gain information and track changes in signal modality. This
is achieved through exploiting the different performance ca-
pabilities of key adaptive filtering algorithms and tracking the
evolution of the adaptive convex mixing parameterλ within
the hybrid filter structure. We have also presented a method
by which it is possible to build on this information by com-
bining the responses of several mixing parameters to obtaina
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Fig. 6. Top panels: EEG epileptic seizure data. Middle pan-
els: corresponding evolution ofλ solid line: nonlinear hybrid
filter, broken line: sparse hybrid filter. Bottom panels compar-
ison of nonlinearity and sparsity, evolution over time starting
from coordinates (1,1)

more complete understanding of the nature of signals.
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