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Signal Modality – General Perspective

Notice the difference between Signal Nonlinearity and System
Nonlinearity

Deterministic vs. Stochatic nature or Linear vs. Nonlinear nature

 

Change in signal modality can indicate e.g. health hazard (fMRI, HRV)
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Challenges in Signal Modality Characterisation

• Changes in the signal nature between (e.g. linear and nonlinear) can
reveal information which is critical (e.g. health conditions);

• Existing algorithms based on hypothesis testing and operate in a
batch manner;

• Other methods based on comparing outputs of two adaptive filters of
different kind ⇒ choice of many parameters

• These filters do not co–operate ⇒ simple test but non–unique

solution.

Our aim:- on–line signal modality characterisation for real–world problems

Benefits:- Synergy between the filters, existence and uniqueness of solution
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Hybrid Filters

Key properties:-

• Multiple individual adaptive subfilters operating in parallel;

• Subfilters feed into a mixing algorithm which produces the single output
of the filter;

• Mixing algorithm is also adaptive and combines the outputs of the
subfilters (collaboration, synergy for two different filters);

Advantages:-

• When in “filtering mode”, improved performance over the individual
constituent filters;

• One effect of this mixing algorithm is that it can give an indication of
which filter is currently responding to the input signal most effectively;

• By selecting algorithms which are suitable for either linear or nonlinear
signals ⇒ the mixing algorithm can adapt according to fundamental
properties of the input signal.
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Convex Hybrid Filtering Configuration

Virtues of Convex Combination (λ ∈ [0, 1])

yλx + (1−  )yλx

Convexity ⇒ existence and uniqueness of solution
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Adaptation of Mixing Parameter λ (Modality Tracking)

To preserve the inherent characteristics of the subfilters, the constituent
subfilters are each updated by their own errors e1(k) and e2(k), whereas
the parameter λ is updated based on the overall error e(k).

The convex mixing parameter λ(k) is updated using the following gradient
adaptation

λ(k + 1) = λ(k) − µλ∇λE(k)|λ=λ(k)

where µλ is the adaptation step-size. The λ update can be shown to be

λ(k + 1) = λ(k) −
µλ

2

∂e2(k)

∂λ(k)

= λ(k) + µλe(k)(y1(k) − y2(k))

To ensure the combination of adaptive filters remains a convex function it
is critical λ remains within the range 0 ≤ λ(k) ≤ 1, a hard limit on the set
of allowed values for λ(k) was therefore implemented.
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Nonlinear Hybrid Filter

The NLMS algorithm  widely used, known for its robustness and
excellent steady state properties

yNLMS(k) = x
T
(k)wNLMS(k)

eNLMS(k) = d(k) − yNLMS(k)

wNLMS(k + 1) = wNLMS(k) +
µNLMS

‖x(k)‖2
2 + ε(k)

eNLMS(k)x(k)

The NNGD algorithm  faster convergence speed and much better

tracking capabilities

yNNGD(k) = Φ (net(k))

net(k) = x
T
(k)wNNGD(k)

eNNGD(k) = d(k) − yNNGD(k)

wNNGD(k + 1) = wNNGD(k) + η(k)Φ
′
(net(k)) eNNGD(k)x(k)

η(k) =
1

C + [Φ′ (net(k))] ‖x(k)‖2
2
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Sparse Hybrid Filter

The NLMS algorithm  proved a better choice than the LMS due to its
improved tracking capabilities allowing it to adapt quickly to changes in
the input signal preventing the sparse filter from dominating

The SSLMS algorithm  specifically designed for sparse inputs

ySSLMS(k) = x
T (k)wSSLMS(k)

eSSLMS(k) = d(k) − ySSLMS(k)

wSSLMS(k + 1) = wSSLMS(k) + µ (|wSSLMS(k)| + ε) e(k)x(k)

# In both cases λ adapts according to the dynamics of the input
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Tracking Capability:- Synthetic Signals

The hybrid filters were evaluated in an adaptive one step ahead prediction
setting with the length of the adaptive filters set to N = 10 for a set of
100 independent simulation runs.
The filters were presented with an input signal which alternated every 100
samples for the inputs described by a stable linear AR(4) process:

x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k − 3) − 0.41x(k − 4) + n(k)

a benchmark nonlinear signal (Narendra III):

x(k + 1) =
x(k)

1 + x2(k)
+ n3(k)

and a benchmark sparse distribution, where n(k) is a zero mean, unit
variance white Gaussian process.
λ = 1 corresponds to the output of the NNGD/SSLMS trained subfilters
and λ = 0 corresponds to the output of the NLMS trained subfilters.
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Tracking Capability:- Synthetic Signals

The evolution of the mixing parameters, nonlinear hybrid filter (solid line)
and sparse hybrid filter (broken line)
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⇒ output of the convex combination is dominated by the filter most
appropriate for the input signal characteristics
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Tracking Multiple Modality Changes

Comparison of the evolution of the mixing parameters, linear sections (solid
line), nonlinear sections (broken line) and sparse sections (dotted line)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Nonlinear
Linear

Sparse

⇒ allows tracking of multiple different signal characteristics
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Tracking Multiple Modality Changes

• correlation between the evolution of the two λs during the linear
sections, differences in responses can be attributed to differences in
learning rates;

• for the nonlinear and the sparse signals, however, the sparsity and
saturation type nonlinearity are different phenomena and the sparse and
nonlinear filter behaved differently;

• as expected (as sparsity can be considered a subset of nonlinearity) the
nonlinear hybrid filter obtains similar results for both the nonlinear and
sparse inputs;

• the sparse hybrid filter shows a marked difference in levels of sparsity for
the same inputs.

⇒ These results highlight the use of this technique in building a
complete understanding of the nature of signals
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Real-World Applications:- Epileptic Seizure Data

EEG data showing the onset of epileptic seizures has been observed
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The proposed approach effectively detects changes in the nature of the
EEG signals
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Conclusions

• Novel approach to identify changes in the modality of a signal;

• Convex combination of two adaptive filters for which the transient
responses are significantly different, in order to exploit the different
performance capabilities of each;

• Collaborative adaptive signal processing approach, based on synergy
between the constitutive filters;

• The evolution of the adaptive convex mixing parameter λ, helps
determine which filter is more suited to the current input signal
dynamics, and thereby gain information about the nature of the signal;

• The analysis and simulations illustrate that there is significant potential
for the use of this method for online tracking of some fundamental
properties of the input signal.
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