# Collaborative Adaptive Filtering in the Complex Domain

#### Beth Jelfs, Yili Xia and Danilo P. Mandic

Imperial College London, UK

{beth.jelfs,yili.xia,d.mandic}@imperial.ac.uk

#### Scott C. Douglas

Southern Methodist University, Texas, USA

douglas@engr.smu.edu

Imperial College

London

# **Introduction**

- Processing in the complex domain provides a natural processing platform (phase, synchrony, analytic signals).
- Complex-valued signals can be either complex by design (communications) or by convenience of representation (radar, sonar).
- Processing real domain signals in C allows the inclusion of phase components, resulting in multidimensional solutions with benefits over real domain solutions [1].

# **Complex Least Mean Square**

The CLMS [2]:

$$e(k) = d(k) - \mathbf{x}^{T}(k)\mathbf{w}(k),$$
$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu e(k)\mathbf{x}^{*}(k),$$

- is a natural extension of the LMS algorithm;
- benefits from stabitliy & robustness of LMS;
- allows simultaneous filtering of the real and imaginary parts of complex-valued data.
- ↔However the CLMS does not take account of augmented complex statistics

# **Augmented Complex Statistics**

Augmented complex statistics takes into account not only the "standard" covariance matrix but also the pseudo–covariance matrix [3]

$$\mathcal{C}_{\mathbf{x}\mathbf{x}} = E\{\mathbf{x}\mathbf{x}^H\}, \ \mathcal{P}_{\mathbf{x}\mathbf{x}} = E\{\mathbf{x}\mathbf{x}^T\}$$

For circular complex processes  $\mathcal{P}_{xx} = 0$ . For the generality of complex signals (non-circular) taking into account only the covariance matrix and not the pseudo-covariance matrix results in undermodelling.

## **Augmented CLMS**

The ACLMS [4] utilises the full second order statistical information available within the signal by using an augmented complex vector as its input.

$$e(k) = d(k) - \mathbf{x}_a^T(k)\mathbf{w}(k)$$
$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu e(k)\mathbf{x}_a^*(k).$$

where  $\mathbf{x}_a$  and its covariance matrix  $\mathcal{C}_{\mathbf{x_ax_a}}$  are

$$\mathbf{x}_a = \left[egin{array}{c} \mathbf{x}\ \mathbf{x}^* \end{array}
ight] \quad \mathcal{C}_{\mathbf{x_a x_a}} = \left[egin{array}{c} \mathcal{C}_{\mathbf{xx}} & \mathcal{P}_{\mathbf{xx}}\ \mathcal{P}_{\mathbf{xx}} & \mathcal{C}_{\mathbf{xx}}^* \end{array}
ight]$$

MLSP 2008

# **Hybrid Filters**

- Hybrid filters have been introduced to improve the performance and stability of adaptive filters [5].
- We propose a hybrid filter which, following the approach from [6], combines the output of the CLMS with that of the ACLMS in a convex manner.
- By combining the ACLMS and CLMS our aim is to design a filter with better overall characteristics for both circular and non-circular complex signals than either of the individual algorithms.

### **Hybrid Filter Structure**



Imperial College



# **Circular & Non–Circular Data**



The circular signal used was a stable AR(4) process x(k)=1.79x(k-1)-1.85x(k-2)+1.27x(k-3)-0.41x(k-4)+n(k)



 $n(k) = \rho(k) \cos(\theta(k)) + j\rho(k) \sin(\theta(k))$ The non-circular data used was the lkeda map [7]  $x(k+1) = 1 + u[x(k) \cos t(k) - y(k) \sin t(k)]$  $y(k+1) = u[x(k) \sin t(k) + y(k) \cos t(k)]$  $t(k) = 0.4 - \frac{6}{1 + x^2(k) + y^2(k)}$ 

MLSP 2008



#### **Convergence Curves - Circular**



**MLSP 2008** 

Imperial College<sup>†</sup> London

#### **Convergence Curves - Non-Circular**



**MLSP 2008** 

Imperial College

# **Evolution of the mixing parameter**



**MLSP 2008** 

Imperial College<sup>†</sup> London

# **Prediction of Wind**



It is clear that the wind vector  $\mathbf{v}$  can be represented in the complex domain as  $\mathbf{V} = \mathbf{v} \cdot e^{j\theta}$  where  $\mathbf{v}$  is the speed and  $\theta$  the direction.

The wind data was measured over a 24 hour period. The wind speed readings were taken in the north–south  $(V_N)$  and east–west  $(V_E)$  directions where

$$\mathbf{v} = \sqrt{\mathbf{V}_E^2 + \mathbf{V}_N^2}$$
$$\theta = \arctan\left(\frac{\mathbf{V}_N}{\mathbf{V}_E}\right)$$



Imperial College

London

**MLSP 2008** 

#### **Prediction Gains**

Prediction gain  $R_p = 10 \log_{10} \frac{\sigma_y^2}{\sigma_e^2}$  for the CLMS, ACLMS and hybrid filters for wind data and circular and non-circular synthetic data

|        | AR(4) | Ikeda | 'Calm' wind | 'High' wind |
|--------|-------|-------|-------------|-------------|
| CLMS   | 5.25  | 0.65  | 7.03        | 3.26        |
| ACLMS  | 4.73  | 3.77  | 6.87        | 4.35        |
| Hybrid | 5.66  | 3.73  | 7.33        | 4.48        |

#### **Conclusions**

- A hybrid filter consisting of a convex combination of the CLMS and ACLMS algorithms has been introduced.
- The hybrid filter takes advantage of the faster convergence speeds of the CLMS and the improved performance in the steady state for non-circular data of the ACLMS.
- It has been shown that the hybrid filter can outperform both of the subfilters for synthetic circular and non-circular data.
- A real world wind signal has been used to demonstrate that for signals where the nature may be changing the hybrid filter will perform consistently well.

#### References

- [1] D.P. Mandic, S. Javidi, G. Souretis, and S.L. Goh, "Why a complex valued solution for a real domain problem," in *Proceedings IEEE International Workshop on Machine Learning for Signal Processing*, 2007, pp. 384–389.
- [2] B. Widrow, J. McCool, and M. Ball, "The complex LMS algorithm," *Proceedings of the IEEE*, vol. 63, no. 4, pp. 719–720, 1975.
- [3] F.D. Neeser and J.L. Massey, "Proper complex random processes with applications to information theory," *IEEE Transaction on Information Theory*, vol. 39, no. 4, pp. 1293–1302, 1993.
- [4] S. Javidi, M. Pedzisz, S.L. Goh, and D.P. Mandic, "The augmented complex least mean square algorithm with application to adaptive prediction problems," in *Proceedings of the IAPR Workshop on Cognitive Information Processing*, 2008.
- [5] J. Arenas-Garcia, A.R. Figueiras-Vidal, and A.H. Sayed, "Mean-square performance of a convex combination of two adaptive filters," *IEEE Transactions on Signal Processing*, vol. 54, no. 3, pp. 1078–1090, 2006.
- [6] D. Mandic, P. Vayanos, C. Boukis, B. Jelfs, S.L. Goh, T. Gautama, and T. Rutkowski, "Collaborative adaptive learning using hybrid filters," in *Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007*, 2007, vol. 3, pp. 921–924.
- [7] K. Aihara, Ed., Applied Chaos and Applicable Chaos, Tokyo: Science–Sha, 1994.