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Introduction
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• Processing in the complex domain provides a

natural processing platform (phase, synchrony,

analytic signals).

• Complex–valued signals can be either complex by

design (communications) or by convenience of

representation (radar, sonar).

• Processing real domain signals in C allows the

inclusion of phase components, resulting in

multidimensional solutions with benefits over real

domain solutions [1].



Complex Least Mean Square
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The CLMS [2]:

e(k) = d(k) − x
T (k)w(k),

w(k + 1) = w(k) + µe(k)x∗(k),

• is a natural extension of the LMS algorithm;

• benefits from stabitliy & robustness of LMS;

• allows simultaneous filtering of the real and

imaginary parts of complex-valued data.

#However the CLMS does not take account of

augmented complex statistics



Augmented Complex Statistics
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Augmented complex statistics takes into account not

only the “standard” covariance matrix but also the

pseudo–covariance matrix [3]

Cxx = E{xx
H}, Pxx = E{xx

T}

For circular complex processes Pxx = 0.

For the generality of complex signals (non–circular)

taking into account only the covariance matrix and

not the pseudo–covariance matrix results in

undermodelling.



Augmented CLMS
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The ACLMS [4] utilises the full second order

statistical information available within the signal by

using an augmented complex vector as its input.

e(k) = d(k) − x
T
a (k)w(k)

w(k + 1) = w(k) + µe(k)x∗
a(k).

where xa and its covariance matrix Cxaxa
are

xa =

[

x

x
∗

]

Cxaxa
=

[

Cxx Pxx

P∗
xx

C∗
xx

]



Hybrid Filters
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• Hybrid filters have been introduced to improve the

performance and stability of adaptive filters [5].

• We propose a hybrid filter which, following the

approach from [6], combines the output of the

CLMS with that of the ACLMS in a convex

manner.

• By combining the ACLMS and CLMS our aim is to

design a filter with better overall characteristics for

both circular and non–circular complex signals

than either of the individual algorithms.



Hybrid Filter Structure
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Mixing Parameter Update
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yλx + (1−  )yλx

Convexity ⇒ existence of solution

y(k) =λ(k)y1(k) + (1 − λ(k))y2(k)

λ(k + 1) =λ(k) − µλ∇λE(k)|λ=λ(k)

∇λE(k)|λ=λ(k) =

{

e(k)
∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}

=ℜ{e(k) (y1(k) − y2(k))∗}
λ(k + 1) =λ(k) + µλℜ{e(k) (y1(k) − y2(k))∗}



Circular & Non–Circular Data
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The circular signal used was a sta-

ble AR(4) process

x(k)=1.79x(k−1)−1.85x(k−2)+1.27x(k−3)

−0.41x(k−4)+n(k)

n(k)=ρ(k) cos(θ(k))+jρ(k) sin(θ(k))
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The non–circular data used was

the Ikeda map [7]

x(k+1)=1+u[x(k) cos t(k)−y(k) sin t(k)]

y(k+1)=u[x(k) sin t(k)+y(k) cos t(k)]

t(k)=0.4− 6
1+x2(k)+y2(k)



Convergence Curves - Circular
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Convergence Curves - Non-Circular
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Evolution of the mixing parameter
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Prediction of Wind
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It is clear that the wind vector v can

be represented in the complex do-

main as V = v ·ejθ where v is the

speed and θ the direction.

The wind data was measured over a 24 hour period.

The wind speed readings were

taken in the north–south (VN ) and

east–west (VE) directions where

v=
√

V2
E

+V2
N

θ=arctan
(

VN
VE

)
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Prediction Gains
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Prediction gain Rp = 10 log10
σ2

y

σ2
e

for the CLMS,

ACLMS and hybrid filters for wind data and circular

and non–circular synthetic data

AR(4) Ikeda ‘Calm’ wind ‘High’ wind

CLMS 5.25 0.65 7.03 3.26

ACLMS 4.73 3.77 6.87 4.35

Hybrid 5.66 3.73 7.33 4.48



Conclusions
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• A hybrid filter consisting of a convex combination of the

CLMS and ACLMS algorithms has been introduced.

• The hybrid filter takes advantage of the faster convergence

speeds of the CLMS and the improved performance in the

steady state for non–circular data of the ACLMS.

• It has been shown that the hybrid filter can outperform both

of the subfilters for synthetic circular and non–circular data.

• A real world wind signal has been used to demonstrate that

for signals where the nature may be changing the hybrid

filter will perform consistently well.
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