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| Introduction

e Processing in the complex domain provides a
natural processing platform (phase, synchrony,
analytic signals).

e Complex—valued signals can be either complex by
design (communications) or by convenience of
representation (radar, sonar).

e Processing real domain signals in C allows the
iInclusion of phase components, resulting in
multidimensional solutions with benefits over real
domain solutions [1].
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Complex Least Mean Square

The CLMS [2]:

e(k) = d(k) —x (k)w(k).
w(k+ 1) =w(k)+ pe(k)x™(k),

e Is a natural extension of the LMS algorithm;

e benefits from stabitliy & robustness of LMS;

e allows simultaneous filtering of the real and
imaginary parts of complex-valued data.

3>However the CLMS does not take account of
~augmented complex statistics
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Augmented Complex Statistics

Augmented complex statistics takes into account not
only the “standard” covariance matrix but also the
pseudo—covariance matrix [3]

Cxx = B{xx!"}, P = B{xx'}

For circular complex processes Py« = 0.

For the generality of complex signals (non—circular)
taking into account only the covariance matrix and
not the pseudo—covariance matrix results in
undermodelling.
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' Augmented CLMS

The ACLMS [4] utilises the full second order
statistical information available within the signal by
using an augmented complex vector as its input.

e(k) = d(k) — x, (k)w(k)
w(k—+1)=w(k)+ pe(k)x: (k).

where x, and its covariance matrix Cy, «, are

X [ CXX 7)XX _

Xa: p—

C
>l< XaXa >l< 3
X 7DXX CXX _
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" Hybrid Filters

e Hybrid filters have been introduced to improve the
performance and stability of adaptive filters [3].

e We propose a hybrid filter which, following the
approach from [6], combines the output of the
CLMS with that of the ACLMS in a convex
manner.

e By combining the ACLMS and CLMS our aim is to
design a filter with better overall characteristics for
both circular and non—circular complex signals
than either of the individual algorithms.
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' Hybrid Filter Structure
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' Mixing Parameter Update

------- ‘ i . ===l =l=l=l=N=
X AX+ (1-QDy y

Convexity = existence of solution

y(k) =A(K)y1(k) + (1 — A(k))ya(k)
AE +1) =Ak) — iaVAE(E) | x=am)
VAE(K) | x=ak) = ¢ G(k)gi\((:)) | 6*(k)§i((k) >

=R {e(k) (y1(k) — y2(k))"}
Ak +1) =A(k) + iR {e(k) (y1(k) — (k)" }
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| Circular & Non—Circular Data

The circular signal used was a sta-
ble AR(4) process
x(k)=1.792(k—1)—1.85x(k—2)+1.27x(k—3)

—0.41z(k—4)+n(k)

n(k)=p(k)cos(0(k))+jp(k)sin(0(k))
The non—circular data used was
the Ikeda map [7]

r(k+1)=14ulz(k) cost(k)—y(k) sint(k)]

y(k+1)=ulz(k)sint(k)+y(k) cost(k)]

N A_ 6
L 1+22(k)+y2 (k)
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Convergence Curves - Circular
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Convergence Curves - Non-Circular
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_ Evolution of the mixing parameter
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Prediction of Wind

It is clear that the wind vector v can
pind be represented in the complex do-
& i mainas V = v -e/? where v is the
N speed and 6 the direction.

The wind data was measured over a 24 hour period.
The wind speed readings were

> =

taken in the north—south (Vy)and =~ ]
east—west (V g) directions where =7
v:\/V%JrV]?V w0
o M G T — |
\% i
9: (_N) 191:00 18:00 22:00 '(|)'|2n(1)g 06:00 10:00 14:00
arctan vz
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Prediction Gains

Prediction gain 1, = 10 logm for the CLMS,
ACLMS and hybrid filters for wmd data and circular

and non—circular synthetic data

AR(4) lkeda ‘Calm’ wind ‘High’ wind

CLMS | 525 0.65 7.03
ACLMS | 4.73 3.77 6.87
Hybrid | 5.66 3.73 7.33
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Conclusions

e A hybrid filter consisting of a convex combination of the
CLMS and ACLMS algorithms has been introduced.

e The hybrid filter takes advantage of the faster convergence
speeds of the CLMS and the improved performance in the
steady state for non—circular data of the ACLMS.

e |t has been shown that the hybrid filter can outperform both
of the subfilters for synthetic circular and non—circular data.

e A real world wind signal has been used to demonstrate that
for signals where the nature may be changing the hybrid
filter will perform consistently well.
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