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Abstract A novel method for online tracking of the
changes in the nonlinearity within both real-domain
and complex—valued signals is introduced. This is
achieved by a collaborative adaptive signal processing
approach based on a hybrid filter. By tracking the
dynamics of the adaptive mixing parameter within the
employed hybrid filtering architecture, we show that it
is possible to quantify the degree of nonlinearity within
both real- and complex-valued data. Implementations
for tracking nonlinearity in general and then more
specifically sparsity are illustrated on both benchmark
and real world data. It is also shown that by combining
the information obtained from hybrid filters of different
natures it is possible to use this method to gain a more
complete understanding of the nature of the nonlinear-
ity within a signal. This also paves the way for building
multidimensional feature spaces and their application
in data/information fusion.
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1 Introduction

Signal modality characterisation reveals the changes in
the nature of real world data (degree of sparsity, non-
linearity, stochasticity etc.) and as such is a key topic
of multidisciplinary research. The applications of signal
modality characterisation are only recently becoming
apparent in signal processing and machine learning and
are very important in online applications. When consid-
ering characterisation of signal modality we adhere to
the definition of a linear signal from [5] as one which is
a linear time-invariant system driven by white Gaussian
noise measured by a static (possibly nonlinear) obser-
vation function. As such we define a nonlinear system
as one which cannot be generated in this way. The
range of signals spanned by just the characteristics of
nonlinearity and stochasticity are shown in Fig. 1 (mod-
ified from [18]) and whilst there are some small areas
which are well understood these tend to be extremes in
nature, such as purely nonlinear deterministic signals
(chaos), or linear and stochastic signals represented
by autoregressive moving average (ARMA) models.
These extremes however do not cover the majority of
real world signals, and the presence of factors such as
noise or uncertainty leads to most real world signals
being represented in the areas (a), (b), (c) or ‘?”.
Knowing more about the nature of the signal being
processed can provide valuable information in many
areas such as health or weather conditions, and some
aspects of this problem for the analysis of EEG data
have been addressed in [12]. This knowledge can also
be used to provide prior knowledge for the selection
of appropriate models as the use of inappropriate
models can lead to problems in their use or training
and in some situations (such as the use of nonlinear
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Figure 1 Deterministic vs. stochastic nature and linear vs. non-
linear nature of real world signals.

model in absence of nonlinearity) can add unnecessary
computational complexity. Another benefit of tracking
the degree of linearity in a signal in real-time, is for
example, to provide prior knowledge to a blind algo-
rithm. Combining the degree of nonlinearity for various
different types of nonlinearity can be used as a signal
“fingerprint”, and when used in conjunction with other
signal modality trackers [21] this can be a powerful
tool for machine learning, detailing changes within the
signal dynamics along time.

Many existing approaches to signal characterisation
are based upon hypothesis testing, describing the signal
in a statistical manner [19]. There is however a need
for online approaches to signal characterisation which
not only identify the nature of a signal but also track
any changes in signal modality. Some disadvantages of
existing online approaches are due to their tendency to
rely on underlying models [16], making their applica-
tion somewhat limited. To overcome these limitations
we propose a much more flexible method based on
collaborative adaptive filtering; by means of hybrid
filters [2]. Whilst previous implementations of hybrid
filters based on convex combinations of adaptive subfil-
ters have focused mainly on the quantitative improve-
ment in performance, our approach relies on observing
the evolution of the mixing parameter. As such the hy-
brid filter is designed to have two constituent subfilters
with sufficiently different characteristics so that when
the mixing parameter is observed we can gain an insight
into the nature of the signals. In addition through the
evolution of the mixing parameter, we can also track
any changes in the modality of the signals.

It is, however, much more complicated to achieve
the tracking of modality change in the complex domain
C. The extensions of hybrid filters from R to C are
non-trivial; this is due to the fact that the nature of
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nonlinearity in Cis fundamentally different from that in
R. For instance, in the design of learning algorithms, it
should be taken into account that the only continuously
differentiable function in C is a constant (Liouville’s
theorem).

Complex-valued signals are either complex by design
or are made complex by convenience of representa-
tion. An example of a real-valued signal which is best
analysed in C is wind, where the fusion of the speed and
direction creates a single complex-valued wind signal,
seen in Fig. 2.

A first attempt to track the modality change of com-
plex signals using hybrid filters was introduced in [21],
where the changes between the split- and fully-complex
natures of the data were tracked. The nonlinearity of
the input signal was implicitly assumed, this however,
may not necessarily be the case. Thus, before checking
for the split- or fully-complex nonlinear nature, we first
need to assess whether the input is linear or nonlinear.

Our underlying idea is to use a technique similar to
that in [13], whereby each subfilter is designed so as
to perform best, on either linear or nonlinear input.
By making these subfilters collaborate and by tracking
the values of the mixing parameter, we can then assess
the degree of nonlinearity. We shall first describe the
hybrid filter configuration and derive the update for
the mixing parameter. Next, we shall introduce specific
implementations of this structure, and the relevant al-
gorithms used. Firstly to assess the degree of nonlin-
earity then extending to include the more specific case
of sparseness of a signal as well as general nonlinearity
before moving on to discuss tracking signal modality in
the complex domain. The performance of the method is
assessed using benchmark linear, nonlinear and sparse
signals, as well as EEG data and a complex—valued
wind signal.

AN

Wind speed

Wind direction
\ E
>

Figure 2 Wind as a complex vector.
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2 Hybrid Filter Configuration

Hybrid filters have been previously introduced to im-
prove the performance of adaptive filters, illustrating
that by collaborative learning using a combination of
subfilters of different characteristics it is possible to
achieve better overall performance than that obtained
from any of the individual subfilters [8]. One of the keys
to designing the hybrid filter is the method in which
the subfilters are combined, one simple but effective
method to combine two subfilters is to combine the
outputs of the subfilters in a convex manner. Convexity
can be described as [4]

Ax + (1 —x)y where A € [0, 1] (1)
For x and y being two points on a line, as shown
in Fig. 3, their convex mixture Eq. 1 will lie on the
same line between x and y. Hybrid filters using convex
combinations of two subfilters both being trained by
the same algorithm have been shown to perform well
in stationary environments and always perform at least
as well as the better of the two subfilters [1]. An alterna-
tive to this using a combination of two subfilters trained
by two different algorithms has shown that by careful
selection of the training algorithms it is possible to take
the desired properties of both subfilters to give a better
overall performance [13]. These hybrid filters have also
been shown to improve the overall stability of the filter,
as should one subfilter fail to converge the hybrid filter
tracks the output of the second subfilter.

A hybrid filter, shown in Fig. 4, consists of two
subfilters, each being adapted independently, with a
convex combination of the two filters then taken as the
output of the hybrid filter. The two subfilters within
the hybrid filtering architecture operate in the predic-
tion setting, sharing the common input vector x(k) =
[x1(k), ..., xn(k)]T for filters of length N. The outputs
of the two subfilters are dependent on the algorithms
used to train the subfilters and are given by y;(k) =
x'(kyw (k) and y,(k) = x” (k)w,(k). The correspond-
ing weight vectors w (k) = [w (k). ..., w; n(k)]" and
wa(k) = [wa1(k), ..., wyn(k)]T, where to preserve its
inherent characteristics each subfilter is updated by its
own error e (k) and e,(k), using a common desired
signal d(k). The convex combination of the subfilter

------- < } o
X Ax+ (1-AN)y y

Figure 3 Convex combination of two points x and y.

er(k)

k
=
>
gy
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Figure 4 Hybrid filter structure.

outputs y, (k) and y, (k) forms the overall system output
y(k), given by

y(k) = A(k)yi(k) + (1 — 1(k)) y2(k) 2)

where A(k) is the mixing parameter, which is made
adaptive, and is updated by minimising the cost
function

1 1
Etk) = Sleto* = Z1d(k) — yk)I? 3
We can obtain the update for A (k) using a stochastic
gradient based adaptation, such as the LMS, whereby

4)

and p; is the step size. From Egs. 2 and 4, the A update
can be shown to be
;. de* (k)

Mk +1) = k) — 2 0k

= L(k) + wre(k) (y1(k) — y2(k)) (5)

By understanding that the output of the hybrid filter
will always be dominated by the better performing
of the two subfilters, it is natural to assume that this
information can be obtained by observing the adaptive
mixing parameter A. With this in mind we show that it
is possible to design a hybrid filter which uses subfilters
trained by algorithms with known different properties
and that the behaviour of A within such a combination
will reveal not only which filter is currently giving the
best response to the input signal, but also that with
appropriately chosen subfilters the response of A can
then be used to reveal knowledge about the nature of
the input signal.

Due to the convex nature of the hybrid filter, provid-
ing at least one of the subfilters converges the hybrid
filter is guaranteed to converge [1, 2]. The key therefore
is ensuring that the mixing parameter remains within

Mk +1) = 1(k) — 1 Vi EGR) iz
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the range [0, 1]. To achieve this different approaches
have been proposed, including the introduction of a
sigmoid nonlinearity into the update. However, as the
purpose of the proposed approach is to track the re-
sponse of the mixing parameter we do not interfere
with the evolution of A, but a hard bound on the values
of Lisusedif A(k) > 1 and A(k) < 0.

2.1 Learning Algorithms

For the purposes of tracking nonlinearity in a signal
the constituent finite impulse response (FIR) subfilters
of the hybrid filter were trained one by a linear al-
gorithm and the other by a saturation type nonlinear
algorithm. The algorithms selected were the normalised
least mean square (NLMS) algorithm [23] and the nor-
malised nonlinear gradient descent (NNGD) algorithm
[9]. These two algorithms were chosen to train the
subfilters as the NLMS is widely used and known for
its robustness and excellent steady state properties
whereas the NNGD has faster convergence and better
tracking capabilities making it more suited to nonlinear
inputs than the NLMS.

The output of the NLMS trained subfilter yyz s is
generated from

ynrms(k) = x (k)W s (k)
enrtms(k) = d(k) — ynims(k)
wyrms(k + 1) = wypps(k)

MNLMS

- k)x(k
XG0 B s Vs OX)

(6)

and yyngp is the corresponding output of the NNGD
trained subfilter given by

ynnGp(k) = @ (net(k))
net(k) = x" (k)Wynep (k)
enngp(k) = d(k) — ynnGp (k)
wWyNGDp(k+ 1) = WwynGp (k)
+n(k)®' (net(k)) ennep (k)x(k)
1

k =
10 = o et IR0

(7

where the step-size parameter of the NLMS filters is
unryms and ¢ is the regularisation term. In the case
of the NNGD @ (-) represents a nonlinear activation
function and C a constant representing the ignored
higher terms, for simulation purposes these were tanh(-)
and unity respectively.

As “nonlinearity” covers a wide range of signals,
to highlight the ability to track more specific changes
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in signal modality the changes in the sparseness of a
signal (a subset of nonlinearity) are also investigated.
The subfilters of this hybrid filter were trained by the
signed sparse LMS (SSLMS) [15] and the NLMS. The
NLMS was selected for the nonsparse filter as it was
found to be a better choice than the LMS due to its
faster convergence speeds allowing it to adapt quickly
to changes in the input signal (preventing the sparse fil-
ter from dominating). The output of the NLMS trained
subfilter is given as above Eq. 6 and the output of
the corresponding SSLMS trained subfilter yg, ,s(k) is
given by

Vssims(k) = XT(k)wSSLMS(k)
Cssims(k) = d(K) — Yssrms(k)
Wsus(K+ 1) = Wg5(k)

1t (IWsias (K| + €) essims (k)X (k) (8)

3 Tracking Changes in Signal Nonlinearity

We shall now investigate the behaviour of A for bench-
mark synthetic linear, nonlinear and sparse inputs. Val-
ues of A were averaged over a set of 100 independent
simulation runs, for the inputs described by a stable
linear AR(4) process:

x(k) =1.79x(k — 1) — 1.85x(k — 2) + 1.27x(k — 3)

—0.41x(k —4) + n(k) 9)
an AR(1) process
x(k) =09x(k — 1) + n(k) (10)

o
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Figure 5 Evolution of the mixing parameters A for hybrid fil-
ter combining NNGD and NLMS subfilters for an input signal
alternating from linear AR(4) to AR(1) to nonlinear every 200
samples.
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Fjgure 6 DVY Scatter AR(4) Model NARENDRA Model Three
diagrams, obtained by 7 z
plotting the target variance of 1k 1t
the original data against the
mean of the target variances v _ : _ : :
of the surrogate data where 0.8F 08F
error bars denote the
standard deviation 9 : : : 2 : : : : :
Ofthetargetvariance ..(6 0.8 - ..(.“. 0.8 [
[ [
of surrogate data. 9] 9]
5 i 5 i i i i i
e
7
7/
7 N B N N B B
0 . . - . y 0 * * * * ;
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
original original

(a) DVV scatter diagram for linear AR(4) (9)

and benchmark nonlinear signals [17]:

x(k)

3
720 +n’ (k)

x(k+1) = (11)
Xk —D(x(tk— 1) +2.5)

T 14 x2k— 1D+ x2(k—2)

x(k) +nk—1) (12)
where n(k) is a zero mean, unit variance white Gaussian
process. The convex combination of the NLMS and
NNGD was presented with an input signal which al-
ternated every 200 samples. For the first 200 samples
the input signal was represented by the linear AR(4)
Eq. 9, this was then followed at samples 200-400 by
the linear AR(1) Eq. 10. After 400 samples the signal
changed to the first of the nonlinear signals Eq. 11 and
at 600 samples to the second nonlinear signal Eq. 12,
after 800 samples the sequence was then repeated. The
corresponding dynamics of the mixing parameter A(k)
is shown in Fig. 5, where a value of A = 1 corresponds
to the output of the NNGD trained subfilter and a
value of A = 0 corresponds to the output of the NLMS
trained subfilter. It is clear from Fig. 5 that the value
of 1 adapts to be dominated by the filter most suited to
the current dynamics of the input signal. These results
are supported by the offline statistical hypothesis test-
ing results obtained through the delay vector variance
technique. Figure 6 shows DVV results for both the
AR(4) Eq. 9 and the nonlinear signal Eq. 11 [3], the
scatter diagram for AR(4) signal lies on the bisector
line, indicating its linear nature whereas that for the
nonlinear signal deviates from the bisector line, indi-
cating its nonlinear nature.!

IThe DVV method is a test for signal nonlinearity. For more
detail, see [5, 10].

(b) DVV scatter diagram for nonlinear signal (11)

Figure 7 shows the behaviour for both hybrid filters
where the input signal alternated from linear AR(4)
Eq. 9 to nonlinear Eq. 11 then back to linear then
to sparse. The sparse signal was defined by a bench-
mark sparse distribution [15], with a 100 taps and four
nonzero taps located located in positions [1, 30, 35, 85].
As expected (as sparsity can be considered a subset of
nonlinearity) the nonlinear hybrid filter obtains sim-
ilar results for both the nonlinear and sparse inputs,
whereas the sparse hybrid filter shows a marked differ-
ence in levels of sparsity for the same inputs. These al-
gorithms have also been shown to give good results not
only on synthetically generated data but also real world
data in the form of EEG data from epileptic seizures [7]
and speech data [20]. It is natural therefore to combine
these results to track not only changes in nonlinearity

Mixing parameter A(k)

1
400
Number of Iterations

1000

Figure 7 Evolution of the mixing parameters A for hybrid fil-
ters combining NNGD and NLMS subfilters (broken line) and
SSLMS and NLMS (solid line) for an input signal alternating
from linear to nonlinear and linear to sparse every 200 samples.

@ Springer

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290



AUTHOR'S PROOF

291
292
293
294

JrnlID 11265_ArtID 358_Proof# 1 - 14/03/09

J Sign Process Syst
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0.2

0

0

Linear Nonlinear

Figure 8 Comparison of the evolution of the mixing parameters
for linear/nonlinear and sparse/nonsparse for an input signal
alternating every 200 samples. Solid line: linear sections, broken
line: nonlinear sections, dotted line: sparse sections.

but also at the same time changes in sparsity. This
allows us to distinguish not only between linear and

more complete interpretation of the nature of the signal
in question [6].

Figure 8 shows the response of A for both the non-
linear hybrid filter and the sparse hybrid filter for the
alternating input signal previously described, with the
solid lines representing the linear sections, the broken
lines the nonlinear sections and the dotted lines the
sparse sections. For the linear sections although the
evolution of the two As do not follow the same path,
there is an obvious correlation between them and the
difference in responses can be attributed to the differ-
ent learning rates of the subfilters of each hybrid filter.
For the nonlinear and the sparse signals, however, the
sparsity and saturation type nonlinearity are different
phenomena and the sparse and nonlinear filter behaved
differently. This representation is similar to the phase
space representation in chaos theory, and allows for
the signal modality characterisation to be considered
within the framework of nonlinear dynamics. The re-
sults obtained from this method give a clearer picture
of the nature of the nonlinearity of the signal, than
any results obtained using a hybrid filter with nonlinear

nonlinear signals but to distinguish also particular types ~ and sparse subfilters. This is due to the fact any signals
of nonlinearity of interest allowing us to build up a  which are sparse are also nonlinear so there is little
Figure 9 Top panels: EEG 3 3
epileptic seizure data. Middle 2 2
panels: corresponding g g
evolution of A solid line: < <
nonlinear hybrid filter, § §
broken line: sparse hybrid £ ! g ! I
filter. Bottom panels kY : : 7| @ : :
comparison of nonlinearity "; | | | | "; | | | |
apd sparsi'ty, evolution over Z -04 I I I I Z -04 ! I I l
time starting from 0 0.5 1 15 2 0 0.5 1 15 2
coordinates (1,1). Number of lterations  y 10* Number of lterations 4 10*
1 T~
= | | | | g A | | |
< | | | | = [ | |
9] [ [ [ [ P [ ' [ [
g | I I | % ' I |
S 05F%g |- —— 4+ —— -1 — -2}~ € 05k — — —1— N\». L A g
s | | | g - | Ll | |
o el o | | g | | | |
()] N -
< I e I N, o I I l[\ I I
X I [ R = I I I I
= 0 | I I ] é 0 | | ""'l"""--r —
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[ [ [ [ [ [
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advantage gained from the sparse subfilter over the
nonlinear subfilter and therefore a hybrid filter using
this combination would result in less clearly defined
values of A.

To demonstrate the application of this method to
real-world data, two sets of EEG data showing the on-
set of epileptic seizures were analysed. Figure 9 shows
the EEG data, along with the corresponding evolution
of the mixing parameters A for both hybrid filters and
the resultant changes in nonlinearity against sparsity.
These results show that the proposed approach can
effectively detect changes in the nature of the EEG
signals which can be very difficult to achieve otherwise,
but it can also differentiate between changes in nonlin-
earity and sparsity.

4 Complex Hybrid Filter Update Algorithm

Consider the update of the mixing parameter A(k)
Eq. 4—note that since the input to the filters is complex,
the error e(k) is also complex, and therefore [14]

ae* (k)
oA (k)

+ e* (k)

(13)

de(k
Vs E(K) s = {e(k) elt) }

or(k)

The two gradient terms from Eq. 13 can be evaluated

as

dek)  de(k)  deik)
k) ok ! andeo
ae* (k) B de, (k) de;(k)

)  ant T onk) (14

where (), and (-); denote respectively the real and
imaginary part of a complex number. Rewriting Eq. 2
in terms of its real and imaginary part and substituting

into Eq. 3 yields

de(k) B

k) yi(k) — ya(k)

ae* (k) B *

e = (10— ) (15)
Finally, the gradient Eq. 13 becomes
Vi )i = 9t feto) (31 0) = v200) ) (16)

where 9i(-) denotes the real part of a complex number,

which yields the mixing parameter update as

M+ 1) = 20) + 3t fet (v200 = i)} (17)
4.1 Complex Learning Algorithms

For the purposes of tracking nonlinearity in the com-

plex domain, the subfilters of Fig. 4 are adapted using
the CNGD [11] and CLMS [22], respectively. Their

b= : :
< : :
> : :
01
0 i i i i
0 200 400 600 800 1000
Number of Iterations (k)
(a) Variation of the mixing parameter A for the
alternating inputs (10) and (11)
(Hevep = 0.08, tiepms = 0.08, uy = 50)

1
=
=<
k]
c
kel
8
®
>

0 i i i i

0 200 400 600 800 1000

Number of Iterations (k)
(b) Variation of the mixing parameter A for the
alternating inputs (9) and (12)
(penep = 0.2, ucpmus = 0.2, uy = 60)

Figure 10 Hybrid combination of CNGD and CLMS, for in-
put natures alternating between linear and nonlinear every 200
samples (a, b).
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Variation of A(k)
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Number of Iterations (k)
(b) Variation of the mixing parameter A for complex
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5000 10000
Number of Iterations (k)

15000

(¢) Variation of the mixing parameter A for complex
wind (ucyGgp =02, ucpps = 0.2, uy = 60)

Figure 11 Hybrid combination of CNGD and CLMS, for
complex-valued wind data (a—c).

@ Springer

normalised variants CNNGD and CNLMS will also 351

be used.
The linear CLMS update is given by

verms(k) = xE(kywep s (k)
ecrms(k) =dk) — ycrms(k)

werms(k + 1) = wepms(k) + necrms(k)x* (k)

(18)

Variation of A(k)

0 200 400 600
Number of Iterations (k)

(a) Input nature alternating between
linear (10) and nonlinear (11)
(Henvep = 0.8, penims = 0.8, o, = 50)

800 1000 1200 1400 1600

Variation of A(K)

1000 1200

0 200 400 600 800
Number of Iterations (k)

(b) Input nature alternating between
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Figure 12 Mixing parameter 2 at the output of the hybrid com-
bination of CNNGD and CNLMS, for input nature alternating

between linear and nonlinear every 200 samples.
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Figure 13 Evolution of A in the hybrid combination of CNNGD and CNLMS for the wind data set, for ucyngp = 0.8, enrms = 0.8

and pu; = 60 (a, b).

whereas the update for the adaptation of the nonlinear
subfilter CNGD is given by

venopk) = @ | xT (kywenep (k)
—_———
net (k)

ecngp(k) = dk) — yenegp (k)
wenep(k+ 1) = wenep (k)

+necnp(k)[@ (net(k)]'x* (k) (19)
The normalised variants, CNLMS and CNNGD, are
specified by

peneus = w/ (1XE) |3 + €) (20)

newwan =/ ([@ erto)] Ix13 + € ) (21)

S Tracking of Nonlinearity within Complex Signals

For generality, two sets of synthesized benchmark sig-
nals and a real-world complex wind dataset were used
in simulations. The linear and nonlinear processes con-
sidered were a stable complex autoregressive A R(4)
Eq. 9, and AR(1) Eq. 10 and the benchmark nonlinear
signals Eqgs. 11 and 12 where n(k) = n,(k) + jn;(k) is a
complex white Gaussian noise (CWGN), for which the
real and imaginary parts are independent real WGN
sequences ~ N'(0, 1) and 6 = 0, + 0,2

To illustrate the ability of the hybrid filter to track
the modality changes within a signal, experiments were
performed on alternating sequences of linear (Eq. 10
or Eq. 9) and nonlinear (Eq. 11 or Eq. 12) data. An
additional set of experiments was conducted on a set
of real-world wind data.? For all simulations, the initial
weight vectors for both filters were set to zero and the
filter order was N = 10. When a nonlinear CNGD or
CNNGD was used, the nonlinearity at the output of the
filter was the complex logistic function

D) =1/1+e7) (22)

5.1 Combination of CNGD and CLMS

In the first set of experiments, the nature of the input
alternated every 200 samples between linear and non-
linear. The evolution of A is shown in Fig. 10 for two
different settings. In both cases, ucygp was set equal
to wcrms, and it was always possible to detect both the
direction of the change from linear to nonlinear and
vice versa, and the degree of such change, as illustrated
by the values of A approaching 0.85 for nonlinear data
and 0.1 and 0.4 for linear data. Also, this approach was
robust to changes in the relative values of weygp and
HCLMS-

In another set, complex-valued wind input was used
as the input to the hybrid filter. The wind is made

2The wind data with speed v and direction ¢ were made complex
as v =ve'? [11].
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complex through the heterogeneous fusion of the wind
speed v and direction ¢ to form a complex signal v =
ve. Figure 11 shows the variation in A for two different
values. In both experiments, it was seen that for differ-
ent values of ucygp and ey s the changes in the wind
nonlinearity were detected with similar results.

5.2 Combination of CNNGD and CNLMS

Next in order to overcome some problems with signal
conditioning, CNNGD Eq. 21 and CNLMS Eq. 20 were
combined in a hybrid fashion. The results shown in
Fig. 12 demonstrate the robustness of this combina-
tion compared to that from Fig. 10. Indeed, by setting
uwennep = eveus = 0.8, the hybrid filter performed
well on a range of synthetically generated signals and
accurately detected both the direction of the change
from linear to nonlinear and vice versa, and the degree
of the change. Furthermore, it can be seen that as the
two transversal filters converge, the tracking of the
degree of nonlinearity in the input is improved in terms
of the range swept by A (due to learning).

Next, the experiments were performed on complex-
valued wind data, and the simulation results are shown
in Fig. 13. The combination of CNNGD and CNLMS
was clearly capable of tracking changes in the lin-
ear/nonlinear nature of the intermittent and nonsta-
tionary wind. The wind was changing its nature in
the region between (1-2500), (5000-7000) and (10000—
15000) samples, which was correctly reflected in the val-
ues of A. For steady wind, the nature of wind exhibited
a medium degrees of nonlinearity. In conclusion, the
combination of CNNGD and CNLMS provided excel-
lent results in the identification of signal nonlinearity on
a broad range of inputs, provided the individual filters
converged.

6 Conclusions

A method for the tracking of signal modality in an on-
line manner has been introduced. It was shown that by
using the a hybrid filter configuration and monitoring
the variation of the mixing parameter, it is possible
to distinguish changes in the signal nature in terms of
sparsity and nonlinearity. This was shown for signals
in the real domain, as well as those in the complex
domain. We have also presented a method by which it
is possible to build on this information by combining
the responses of several mixing parameters to obtain a
more complete understanding of the nature of signals.
The simulation results have shown that the proposed

@ Springer

approach is capable of tracking the nonlinearity and
sparsity within both synthesized and real-world EEG
and complex-valued wind data.
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