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Abstract— A novel complex echo state network (ESN), utilizing
full second-order statistical information in the complex domain,
is introduced. This is achieved through the use of the so-
called augmented complex statistics, thus making complex ESNs
suitable for processing the generality of complex-valued signals,
both second-order circular (proper) and noncircular (improper).
Next, in order to deal with nonstationary processes with large
nonlinear dynamics, a nonlinear readout layer is introduced and
is further equipped with an adaptive amplitude of the nonlin-
earity. This combination of augmented complex statistics and
enhanced adaptivity within ESNs also facilitates the processing of
bivariate signals with strong component correlations. Simulations
in the prediction setting on both circular and noncircular
synthetic benchmark processes and real-world noncircular and
nonstationary wind signals support the analysis.

Index Terms— Augmented complex statistics, complex non-
circularity, echo state networks, widely linear modeling, wind
prediction.

I. INTRODUCTION

RECURRENT neural networks (RNNs) are a class of
nonlinear adaptive filters with feedback, whose compu-

tational power stems from their ability to act as universal
approximators for any continuous function on a compact
domain [1], [2]. Owing to their rich inherent memory through
feedback, RNNs have found applications in the modeling of
highly nonlinear dynamic systems and the associated attractor
dynamics. They are typically used in the system identification
[3], [4], time-series prediction [5], [6], and adaptive noise
cancellation settings [7], [8], where for the nonstationary and
nonlinear nature of the signals and typically long impulse
responses, using the class of static feedforward networks or
transversal filters would result in undermodeling [2], [9], [10].

Recently, a class of discrete-time RNNs, called echo state
networks (ESNs), have been introduced, with the aim to
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reduce the complexity of computation encountered by standard
RNNs [11]. The principle behind ESNs is to separate the
RNN architecture into two constituent components: a recur-
rent architecture, called the “dynamical reservoir” or “hidden
layer,” and a memoryless output layer, called the “readout
neuron.” The recurrent architecture consists of a randomly
generated group of hidden neurons with a specified degree of
recurrent connections, and should satisfy the so-called “echo
state property” to maintain stability [12]. This way, the high
computational complexity of RNNs is significantly reduced
due to the sparse connections among the hidden neurons, in
addition, the learning requirements are reduced to only the
weights connecting the hidden layer and the readout neuron.1

Many real-world bivariate processes, such as vector fields
and directional signals with “intensity” and “direction” com-
ponents, are most conveniently represented when considered
complex-valued [13]. Consequently, in the neural network
literature, several important approaches have been extended to
the complex domain, examples include coherent neural net-
works for sensorimotor systems [14], sonar signal prediction
and image enhancement by multivalued neurons [15], gray-
scale image processing by complex-valued multistate neural
associate memory [16], and geometric figure transformation
via complex-valued backpropagation networks [17].

The first extension of ESNs into the complex domain C was
proposed in [18], this network had a linear output mapping,
and was trained by the complex-valued Wiener filter, thus
making the network second-order optimal for the processing
of circular stationary data. Results in adaptive filtering dealing
with real-world complex-valued data suggest that, due to the
linearity of the output mapping, the degree of universal func-
tion approximation exhibited by standard ESNs may not be
sufficient. To that end, a nonlinear output layer within ESNs,
i.e., the linear mapping followed by a nonlinear activation
function, has been proposed in [19]. To deal with common
problems experienced in neural network training, such as
saturation and slow convergence resulting from the unknown
and large dynamics of inputs, the nonlinear output layer of
ESNs has further been equipped with an adaptive amplitude
of the nonlinearity [19].

Adaptive filtering algorithms in the complex domain C are
usually considered generic extensions of their real domain
counterparts. For instance, a common assumption explicitly

1A recent special issue of Neural Networks, vol. 20, no. 3, 2007, edited by
H. Jaeger, W. Maass, and J. C. Príncipe, was dedicated solely to ESNs and
liquid state machines.
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or implicitly exists in the signal processing literature that
complete second-order statistical information of a zero-mean
complex vector z is contained in the covariance matrix E[zzH ].
However, recent results in so-called augmented complex sta-
tistics show that, in general, this leads to suboptimal esti-
mation [20] and that for the generality of complex-valued
random processes both the covariance matrix E[zzH ] and
the pseudo-covariance matrix E[zzT ] should be considered
to completely capture the second-order statistics available.
In practice, this is achieved by widely linear modeling [21],
which has been proved to be particularly advantageous when
processing second-order noncircular (improper) signals for
which the probability distributions are not rotation invariant2

[13], [22].
Recently, augmented complex statistics have been intro-

duced into several key learning algorithms, examples include
the augmented complex least means square (ACLMS) [23],
augmented complex extended Kalman filter [24], and aug-
mented complex real-time recurrent learning [25]. Following
on these results, we here introduce augmented statistics into
the training of complex ESNs, allowing us to make use
of all the available second-order statistical information, and
to produce optimal estimates for second-order noncircular
(improper) signals.

This paper is organized as follows. In Section II, we provide
an overview of widely linear estimation and second-order
augmented complex statistics. In Section III, the augmented
complex ESN and its nonlinear variants are derived. Sim-
ulations on both synthetic circular and noncircular signals
and real-world nonstationary and noncircular wind signals
are given in Section IV, demonstrating the advantage of
the augmented ESN over standard complex ESNs. Finally,
Section V concludes this paper.

II. WIDELY LINEAR MODELING

Consider the real-valued mean squared error (MSE)
estimator

ŷ = E[y|x] (1)

which estimates the values of signal y in terms of another
observation x . For zero-mean jointly normal y and x , the linear
model solution is

ŷ = xT h (2)

where h = [h1, . . . , hN ]T is a vector of fixed filter coefficients,
and the past of the observed variable is contained in the
regressor vector x = [x1, . . . , xN ]T .

In the complex domain, it is assumed that we can use the
same form of conditional mean estimator that for real-valued
signals given in (1), leading to the standard complex linear
minimum mean squared error (MMSE) estimator3

ŷ = zH h (3)

2Circular complex processes have rotation-invariant probability distribution
functions.

3Both y = zT h and y = zH h are correct, yielding the same output and the
mutually conjugate coefficient vectors. The latter form is more common and
the former was used in the original CLMS paper [26], in this paper, we will
use the first form.

where the symbol (·)H denotes the Hermitian transform oper-
ator. However, the real-valued linear estimator in (2) applies
to both the real and imaginary parts of complex variables

ŷr = E[yr |zr , zi ]
ŷi = E[yi |zr , zi ]. (4)

A more general MSE estimator than that in (3) can be
expressed as

ŷ = E[yr |zr , zi ] + j E[yi |zr , zi ]. (5)

Upon employing the identities zr = (z + z∗)/2 and zi =
(z − z∗)/2j we arrive at

ŷ = E[yr |z, z∗] + j E[yi |z, z∗] (6)

leading to a widely linear estimator for complex-valued data,
given by

y = zT h + zH g (7)

where h and g are complex-valued coefficient vectors. This
estimator is suitable for linear MMSE estimation of the
generality of complex-valued processes (both circular and
noncircular) [21], as it accounts for complete second-order
information in C, as shown below.

A. Second-Order Augmented Complex Statistics

From (7), it is clear that the covariance matrix Czz = E[zzH ]
alone does not have sufficient degrees of freedom to describe
full second-order statistics in C [20] and, in order to make use
of all the available statistical information, we also need to con-
sider the pseudo-covariance matrix Pzz = E[zzT ]. Processes
whose second-order statistics can be accurately described by
only the covariance matrix, i.e., those for which the pseudo-
covariance Pzz = 0, are termed second-order circular (or
proper). In general, the notion of circularity extends beyond
second-order statistics to describe the class of signals with
rotation-invariant distributions P[·] for which P[z] = P[ze jθ ]
for θ ∈ [0, 2π). In most real-world applications, complex
signals are second-order noncircular or improper, and their
probability density functions are not rotation-invariant. In
practice, to account for the improperness, the input vector z is
concatenated with its conjugate z∗, to produce an augmented
2N × 1 input vector

za =
[

z
z∗

]
. (8)

This augmented input, together with the augmented weights
wa = [hT , gT ]T , forms a widely linear estimate in (7), and its
2N × 2N augmented covariance matrix is given by [22]

Czaza = E

[
z
z∗

] [
zH zT

]
=

[
Czz Pzz
P∗

zz C∗
zz

]
. (9)

This matrix now contains the complete complex second-
order statistical information available in the complex domain,
(see [13], [27] for more details).
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III. AUGMENTED ESN

A. Standard Complex ESN with a Linear Output Mapping

Fig. 1 shows the architecture of a standard ESN, which is
composed of K external input neurons, L readout neurons,
and N internal units. Without loss of generality, we shall
address ESNs with one readout neuron (L = 1), as this
facilitates the nonlinear adaptive filtering setting within the
ESN architecture. The input and internal weights are stored,
respectively, in the (N ×K ) and (N ×N) weight matrices Wip ,
Win , vector wb comprises the feedback weights connecting
the readout neuron and the internal units, vector x(k) is the
(N ×1) internal state vector, u(k) represents the (K ×1) input
vector, and y(k) is the overall output. The network state at time
instant k, denoted by q(k), is a concatenation of the input u(k),
internal state x(k), and the delayed output y(k − 1)

q(k) = [
u(k), . . . , u(k − K + 1), x1(k), . . . , xN(k), y(k − 1)

]T

(10)

whereas the internal unit dynamics are described by [12]

x(k) = f
(
Wipu(k) + Winx(k − 1) + wb y(k − 1)

)
(11)

where f(·) is a vector-valued nonlinear activation function of
the neurons within the reservoir.

The echo state property is provided by randomly choosing
an internal weight matrix Win and performing scaling to make
the spectral radius ρ(Win) < 1, thus ensuring that the network
is stable, the input and feedback weights can be initialized
arbitrarily [12]. For an ESN with a linear output mapping, the
output y(k) is given by

y(k) = qT (k)w(k) (12)

where w(k) is the weight vector corresponding to the output
layer. Its update can be performed, e.g., based on the CLMS
algorithm, given by [26]

w(k + 1) = w(k) + μe(k)q∗(k). (13)

B. Augmented Complex ESN with a Linear Readout Neuron

Based on the widely linear model given in Section II, we
shall now derive the augmented widely linear stochastic gradi-
ent algorithm for the training of complex ESNs, thus making
them suitable for processing general complex-valued signals
(both circular and noncircular). To this end, we introduce the
augmented network state qa(k) as4

qa(k) = [
u(k), . . . , u(k − K + 1), xa

1(k), . . . , xa
N(k),

y(k − 1), u∗(k), . . . , u∗(k − K + 1)
]T

. (14)

Since the input weights of the ESN stored in matrix Wip are
randomly chosen prior to training, we can use another matrix
Wa

ip to initialize the weights associated with the conjugate
input vector u∗(k). The internal state transition within the
augmented ESN is therefore described by

xa(k) = f
(
Wipu(k) + Winxa(k − 1)

+wb y(k − 1) + Wa
ipu∗(k)

)
. (15)

4This augmented state is not a straightforward application of the widely
linear model in (7) and is specific to ESNs.
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Fig. 1. Architecture of an ESN.

Due to the specific properties of the ESN architecture, the
output y(k) of the augmented ESN with linear output mapping
is governed by an asymmetric version of the widely linear
model in (7) to yield

y(k) = vT (k)h(k) + uH (k)g(k) (16)

where v(k) is defined as v(k) = [
u(k), . . . , u(k − K +

1), xa
1(k), . . . , xa

N(k), y(k − 1)
]T

, and h(k) and g(k) denote,
respectively, the conventional and conjugate output weight
vectors.

Note that the ESN has a local feedback (from the output to
the internal state) and thus, unlike standard feedback structures
[13], [28], the output within the state vector (14) of the ESN
does not require augmentation with its conjugate. Therefore,
due to local feedback, the conjugate weight vector g(k) is only
associated with the conjugate input signal. The standard and
conjugate weight vectors are thus of different dimensions, but
as with all widely linear models, the conjugate weight vector
g(k) = 0 for a circular input signal.

C. Training of Augmented ESNs

The ESN is trained based on the cost function

J (k) = 1

2
|e(k)|2 = 1

2
e(k)e∗(k) (17)

where e(k) is the instantaneous output error e(k) = d(k) −
y(k), and d(k) is the desired (teaching) signal. The up-
date of the conjugate weight vector g(k) in (16) is given
by

g(k + 1) = g(k) − μ∇gJ (k) (18)

where μ is the learning rate. Note that J (k) is a real-valued
function dependent on both output errors e(k) and e∗(k). It
can be shown that the maximum change in the cost function
on the error surface occurs in the direction of the conjugate
gradient ∂J (k)/∂g∗(k), i.e., [29]–[31]

∇gJ (k) = ∂J (k)

∂g∗(k)
. (19)

Expanding the term ∂ J (k)/∂g∗(k) gives

∇gJ (k) = 1

2

[
e(k)

∂e∗(k)

∂g∗(k)
+ e∗(k)

∂e(k)

∂g∗(k)

]
. (20)
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Since

e∗(k) = d∗(k) − vH (k)h∗(k) − uT (k)g∗(k) (21)

and ∂e(k)/∂g∗(k) = 0, we obtain

∇gJ (k) = −1

2
e(k)u(k) (22)

giving the update of the conjugate weight vector g(k) in the
form5

g(k + 1) = g(k) + μe(k)u(k). (23)

In a similar way, for the update of the conventional weight
vector h(k), we have

e(k) = d(k) − vT (k)h(k) − uH (k)g(k) (24)

with the gradient

∇hJ (k) = ∂ J (k)

∂h∗(k)
= 1

2

[
e(k)

∂e∗(k)

∂h∗(k)
+ e∗(k)

∂e(k)

∂h∗(k)

]
(25)

giving

∇hJ (k) = −1

2
e(k)v∗(k) (26)

and the update

h(k + 1) = h(k) + μe(k)v∗(k). (27)

We can express the updates in (23) and (27) in a com-
pact vector form, by defining the augmented weight vector
wa(k) as

wa(k) = [
hT (k), gT (k)

]T (28)

to give the update of ACLMS algorithm for ESNs

wa(k + 1) = wa(k) + μe(k)qa∗
(k) (29)

where qa(k) is the augmented network state in (14).
Owing to the use of the widely linear model and augmented

complex statistics, the augmented ESN has clear theoretical
advantages over the standard ESN for the processing of
noncircular complex signals. However, due to the sparse nature
of the connectivity within the reservoir, the linear output
mapping may not be powerful enough for efficient modeling of
signals with large nonlinear dynamics. To this end, in the next
section, we introduce a nonlinear readout neuron equipped
with a trainable amplitude of nonlinearity.

D. Complex ESN with a Nonlinear Readout Neuron

The output y(k) of the standard ESN with a nonlinear output
layer is given by [12]

y(k) = �(net (k)) = �
(

qT (k)w(k)
)

(30)

where �(·) is the output activation function, and the weight
vector w(k) is updated by minimizing the cost function J (k),
given in (17), to give

w(k + 1) = w(k) − μ∇wJ (k). (31)

5The factor 1/2 in (23) has been incorporated into the learning rate μ.

Similar as in the previous section, we can obtain the weight
update of the complex nonlinear gradient descent (CNGD)
algorithm [13], [32] for ESNs as6 (factor 1/2 is absorbed in μ)

w(k + 1) = w(k) + μe(k)�′∗(net (k)
)
q∗(k). (32)

To derive the corresponding augmented CNGD (ACNGD)
algorithm for the nonlinear output layer of the augmented
ESN, recall that the output y(k) is given by

y(k) = �(net (k)) = �
(

vT (k)h(k) + uH (k)g(k)
)

. (33)

The update of the conjugate weight vector g(k) in (33) is
given by

g(k + 1) = g(k) − μ∇gJ (k). (34)

From (20), after setting ∂e(k)/∂g∗(k) = 0, we have

∇gJ (k) = 1

2
e(k)

∂e∗(k)

∂g∗(k)
. (35)

Since e∗(k) = d∗(k) − �∗ (net (k)), and for the
complex transcendental functions ∂�∗(net (k))/∂g∗(k) =
(∂�(net (k))/∂g(k))∗, using the chain rule, we arrive at

∇gJ (k) = −1

2
e(k)�′∗(net (k)

)
u(k) (36)

giving the update for the weight vector g(k) in the form

g(k + 1) = g(k) + μe(k)�′∗(net (k)
)
u(k). (37)

In a similar way, the update of the weight vector h(k)
becomes

h(k + 1) = h(k) + μe(k)�′∗(net (k)
)
v∗(k) (38)

and the update of the augmented weight vector

wa(k + 1) = wa(k) + μe(k)�′∗(net (k)
)
qa∗

(k). (39)

E. ESNs with an Adaptive Amplitude of Output Nonlinearity

The nonlinear output layer has been introduced into ESNs to
provide a sufficient degree of nonlinearity for enhanced mod-
eling, however, this does not automatically guarantee optimal
modeling, as some parameters, such as the amplitude of the
nonlinear readout neuron, need to be chosen empirically [33].
To this end, we now introduce a gradient adaptive amplitude
into the output nonlinearity of ESNs. In this case, the activation
function can be expressed as

y(k) = �
(
net (k)

) = λ(k)�
(
net (k)

)
(40)

where the real-valued λ(k) � 0 denotes the amplitude of the
nonlinearity �(net (k)) and �(net (k)) is the unit amplitude
activation function, for which λ(k) = 1. In the stochastic
gradient setting, the parameter λ can be made gradient adaptive
as [19], [33]

λ(k + 1) = λ(k) − η∇Jλ(k) (41)

6For most standard nonlinear activation functions in C (transcendental
functions such as tanh), we have (�∗)′ =�′∗.
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where η is the step size of the algorithm. The gradient

∇λJ (k) = ∂J (k)

∂λ(k)
= 1

2

∂
[
e(k)e∗(k)

]
∂λ(k)

= 1

2

[
e∗(k)

∂e(k)

∂λ(k)
+ e(k)

∂e∗(k)

∂λ(k)

]
(42)

and since λ(k) is real-valued, ∂e∗(k)/∂λ(k) = (∂e(k)/∂λ(k))∗,
giving

∂e(k)

∂λ(k)
= −�(net (k)). (43)

The update for the amplitude of nonlinearity within adaptive
amplitude CNGD (AACNGD) algorithm is therefore given by

λ(k + 1) = λ(k) + η

2

[
e∗(k)�(net (k)) + e(k)�

∗
(net (k))

]
(44)

and applies to both standard (CGND) and ACNGD learning
algorithms, for more detail, see [13].

F. Merits of Nonlinearity and Widely Linear Model

To illustrate the effect of nonlinearity and the widely linear
model, we generated a circular doubly white noise n(k), with
zero mean and unit variance, and passed it through a complex-
valued tanh nonlinearity, defined in (45), and the widely linear
model given by x(k) = WL(n(k)) = 0.6n(k) + 0.8n∗(k).
Fig. 2(a) and (b) shows that the application of the widely linear
model does not change the Gaussian natures of the real and
imaginary parts, it only alters the power ratio. Fig. 2(c) and
(d) shows that the application of tanh nonlinearity alters the
character of distribution, which cannot be achieved by using
the widely linear model. It is therefore natural to combine
the widely linear model and nonlinear processing in order to
deal simultaneously with various aspects of the nature of the
data. By introducing the adaptive amplitude of nonlinearity, we
have an additional degree of freedom, allowing the nonlinear
function to operate in a quasi-linear range if so required by
the nature of the data.

IV. SIMULATIONS

To verify the potential of the proposed augmented ESNs
compared to standard complex ESNs, we performed simu-
lations on both benchmark synthetic proper and improper
signals, and for noncircular real-world wind data.

For all signals, experiments were undertaken by averaging
200 independent simulation trials in the adaptive prediction
setting. The nonlinearity at the nonlinear output layer of the
ESNs was chosen to be the complex tanh function

�(x) = eβx − e−βx

eβx + e−βx
(45)

with slope β = 1. Ten neurons were used in the hidden layer,
with the internal connection weights having 5% degree of
connectivity. The input tap length was K = 1, with no bias
input. The values of the randomly selected input as well as
internal and feedback weights Wip , Win , and wb were taken
from a uniform distribution in the range [−1, +1], and the
spectral radius ρ(Win) was set to be 0.8. The learning rate was
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Fig. 2. Probability density functions obtained from a doubly white circular
noise after applying the widely linear model and tanh nonlinearity. (a) Real
part of WL (n(k)). (b) Imaginary part of WL (n(k)). (c) Real part of tanh
(n(k)). (d) Imaginary part of tanh (n(k)).

μ = 0.005 for all the learning algorithms considered, with the
initial amplitude for the AACNGD algorithm λ(0) = 1 and
the step size of the adaptive amplitude update η = 0.2.

The benchmark circular signal was a stable linear autore-
gressive (AR)(4) process, given by [2]

r(k) = 1.79r(k − 1) − 1.85r(k − 1) + 1.27r(k − 3)

−0.41r(k − 4) + n(k) (46)

driven by complex-valued doubly circular white Gaussian
noise n(k) with zero mean and unit variance.

The benchmark noncircular signal was a complex AR
moving-average (ARMA) process, whose transfer function
was a combination of the MA model in [34] and the stable
AR model in (46), given by

r(k) = 1.79r(k − 1) − 1.85r(k − 2) + 1.27r(k − 3)

−0.41r(k − 4) + 0.2r(k − 5) + 2n(k)

+0.5n∗(k) + n(k − 1) + 0.9n∗(k − 1) (47)

with

E{n(k − i)n∗(k − j)} = δ(i − j)

E{n(k − i)n(k − j)} = Cδ(i − j) (48)

where n(k) is the complex-valued doubly circular white
Gaussian noise7 and C = 0.95 [34].

The nonlinear and noncircular chaotic Ikeda map signal is
given by [35]

x(k + 1) = 1 + u (x(k)cos[t (k)] − y(k)sin[t (k)])
y(k + 1) = u (x(k)sin[t (k)] + y(k)cos[t (k)]) (49)

where u = 0.9 and t (k) = 0.4 − 6/(1 + x2(k) + y2(k)).

7Double whiteness implies the uncorrelated real and imaginary channels,
for circular white Gaussian noise, n = nr + jni , σ 2

nr = σ 2
ni

, whereas for

noncircular data, σ 2
nr > σ 2

ni
, where σ 2

nr and σ 2
ni

are, respectively, the powers
of the real and imaginary parts.
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TABLE I

COMPARISON OF DEGREES OF NONCIRCULARITY s FOR THE VARIOUS CLASSES OF SIGNALS

Circular AR(4) (46) Noncircular ARMA (47) Ikeda map (49) Wind (low) Wind (medium) Wind (high)
s 0.0016 0.9429 0.8936 0.1583 0.4305 0.8117
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Fig. 3. Geometric view of circularity via “real-imaginary” scatter plots.
(a) Circular AR(4) process (46). (b) Noncircular ARMA process (47).
(c) Noncircular Ikeda map (49). (d) Wind (low) signal. (e) Wind (medium)
signal. (f) Wind (high) signal.

The wind data was sampled at 50 Hz and was collected in
an urban environment over a one-day period [36], and was
represented as a vector of speed and direction in the North–
East coordinate system. The wind signal was made complex
through combining the wind speed v and direction ϕ to form a
complex signal ν = {ve jϕ}. Based on the changes in the wind
intensity, the noncircular wind data were identified as regions
of low, medium, and high dynamics. We here perform simul-
taneous prediction of wind speed and direction, the results
corresponding to wind power can be found in [37] and [38].

Fig. 3 shows the scatter plots of the complex signals consid-
ered in simulations. Observe the circular symmetry (rotation
invariance) for the AR(4) signal (46) and the noncircularity of
the ARMA model (47), Ikeda map (49), and wind signals. For
a quantitative measurement of the degree of noncircularity of
a complex vector z, we used the index s given by [39]

s = 1 − det(Czaza )det−2(Czz) (50)

where det(·) denotes the matrix determinant operator, the
degree of noncircularity s is normalized to within [0, 1], with
the value of 0 indicating perfect circularity. Table I illustrates
the degrees of noncircularity s for the various classes of
signals. Observe the excellent match between the measure of
noncircularity in Table I and the scatter plot descriptions in
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Fig. 4. MSEs of one-step-ahead prediction for augmented and standard
ESN trained by the AACNGD algorithm. (a) Noncircular Ikeda map (49). (b)
Noncircular and nonstationary wind (high) signal.

Fig. 3, for instance, among the wind segments, the wind (low)
region was least noncircular, whereas the wind (high) region
exhibited strong noncircularity.

The standard prediction gain Rp � 10 log10
(
σ 2

x /σ̂ 2
e

) [d B]
was employed to assess the performance, where σ 2

x and σ̂ 2
e

denote, respectively, the variance of the input signal x(k) and
the forward prediction error e(k). Table II compares averaged
prediction gains Rp (dB) and their standard deviations over
200 independent trials for the standard and augmented ESNs
trained by CLMS, CNGD, and AACNGD algorithms, as well
as a dual univariate ESN trained by the LMS algorithm8

for the complex-valued signals considered. As expected, the
dual univariate ESN, which treats the real and imaginary

8The dual univariate approach deals with complex-valued data by splitting
the input signals into its real and imaginary parts and treating them as inde-
pendent real-valued quantities [13]. In a dual univariate ESN, two independent
reservoirs are generated to model the two components of the input.
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TABLE II

COMPARISON OF PREDICTION GAINS Rp AND THEIR STANDARD DEVIATIONS (IN BRACKET) FOR THE VARIOUS

CLASSES OF SIGNALS AVERAGED OVER 200 INDEPENDENT INITIALIZATIONS OF ESN

Rp [dB] Circular AR(4) Noncircular ARMA Ikeda map Wind (low) Wind (medium) Wind (high)
Dual univariate ESN (LMS) 4.1928 (0.5849) 2.8064 (0.3211) −0.0271 (0.1846) 2.3519 (0.5882) 4.0615 (0.9153) 8.1162 (0.9124)

Standard ESN (CLMS) 4.6701 (0.6112) 3.5341 (0.3541) 2.1134 (0.3619) 2.4635 (0.4516) 4.7938 (0.7519) 9.5917 (0.9746)
Augmented ESN (ACLMS) 4.5489 (0.4792) 4.0396 (0.3624) 3.1967 (0.4258) 2.6417 (0.3620) 5.3029 (0.7781) 10.2063 (0.9537)

Standard ESN (CNGD) 4.6947 (0.5957) 3.6744 (0.3438) 2.1558 (0.3005) 2.6653 (0.4738) 5.0529 (0.7853) 9.9982 (1.0130)
Augmented ESN (Augmented CNGD) 4.5764 (0.4665) 4.1511 (0.3380) 3.2666 (0.5435) 2.8095 (0.3681) 5.7438 (0.8054) 10.7125 (0.9860)

Standard ESN (AACNGD) 6.6080 (0.5808) 5.0524 (0.5013) 2.4679 (0.5673) 4.0850 (0.3472) 6.3256 (0.7399) 11.7789 (0.9065)
Augmented ESN (Augmented AACNGD) 6.5357 (0.4970) 5.2484 (0.6149) 3.5912 (0.3053) 4.2571 (0.3499) 6.8286 (0.7968) 12.1900 (1.0272)

TABLE III

PERCENTAGE OF ENHANCED PERFORMANCE OF AUGMENTED ESN ALGORITHMS FOR COMPLEX NONCIRCULAR SIGNALS

Noncircular ARMA Ikeda map Wind (low) Wind (medium) Wind (high)
Augmented ESN (ACLMS) 95.5% 98.5% 91.5% 94% 91%

Augmented ESN (Augmented CNGD) 95% 98% 90% 95% 94.5%
Augmented ESN (Augmented AACNGD) 93.5% 99% 89.5% 92.5% 92%
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Fig. 5. Comparison of performances of standard and augmented ESNs trained
by different algorithms, over a range of degrees of connectivity on one-step
ahead prediction of the wind (medium) and (high) signals. (a) Wind (high).
(b) Wind (medium).

parts of complex-valued data as two independent channels,
had the worst performance. For the circular AR(4) signal,
the performance of the augmented complex ESN was similar
to that of standard ESN. For the noncircular signals, there
was a significant improvement in the prediction gain when
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Fig. 6. Comparison of performances of standard and augmented ESNs
trained by different algorithms, over a range of spectral radii on one-
step ahead prediction of the noncircular wind (medium) and (high) signals.
(a) Wind (high). (b) Wind (medium).

the augmented ESN was employed. As desired, the advantage
of the nonlinear output layer over the linear output mapping
was more pronounced in the prediction of the nonlinear syn-
thetic signal and nonlinear and nonstationary real-world wind
signals. In practice, due to the randomly generated internal
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Fig. 7. Comparison of performances of standard and augmented ESNs
trained by different algorithms, over a range of reservoir size on one-step-
ahead prediction of the noncircular ARMA and wind (medium) signals.
(a) Noncircular ARMA. (b) Wind (medium).

reservoir within an ESN, the augmented ESN cannot guarantee
enhanced performance over its standard version in every trial,
however, as illustrated in Table III, on average, in more than
90% of the trials the widely linear algorithms outperformed
the corresponding standard ones.

To further illustrate the advantage of using augmented
complex statistics within complex-valued ESNs, we compared
the MSEs of both the augmented and standard ESNs with
adaptive amplitude of nonlinearity for the prediction of the
complex-valued synthetic nonlinear and noncircular Ikeda map
and the noncircular wind (high) signal. Fig. 4 shows that,
in both cases, the augmented ESN with a nonlinear readout
neuron trained by the augmented AACNGD outperformed its
standard version.

We next investigated the influences of two parameters re-
lated to the generation of the internal layer, the degree of con-
nectivity, and the spectral radius ρ(Win) on the performance of
standard and augmented ESNs. Figs. 5 and 6 show that, in all
the cases, for the prediction of real-world wind (medium) and
(high) signals the augmented ESN trained by the augmented
AACNGD algorithm achieved the best performance and that
for both learning strategies it is desirable to keep a low
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Fig. 8. Comparison of performances of standard and augmented ESNs
trained by different algorithms on multiple-step-ahead prediction of the wind
(medium) and (high) signals. (a) Wind (high). (b) Wind (medium).

degree of connectivity within the reservoir. This conforms
to the ESN theory [12] that a small degree of connectivity
can perform a relative decoupling of subnetworks with rich
reservoir dynamics.

The size of the dynamical reservoir is another important
parameter that influences the performance of ESNs, as it
reflects their universal approximation ability. An ESN with
a larger reservoir size can learn the signal dynamics with
a higher accuracy [40], as shown in Fig. 7(a) on one-step-
ahead prediction of the noncircular ARMA process in (47).
This, however, applies to stationary signals, whereas for fast-
changing nonstationary processes, the larger reservoir caused
saturation of internal neurons, resulting in performance degra-
dation, as shown in Fig. 7(b) for the prediction of the nonsta-
tionary wind (medium) signal. Observe that, in all the cases,
the augmented ESNs outperformed their standard counterparts.

In the final set of simulations, we considered multistep-
ahead prediction of the noncircular and nonstationary wind
(medium) and (high) data. Fig. 8 shows the prediction gains
of ESNs for a prediction horizon M = 1, 2, 3, 4, and 5, in
all the cases, the augmented ESN with adaptive amplitude of
nonlinearity achieved the best performance.
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V. CONCLUSION

An augmented complex ESN has been introduced for
nonlinear adaptive filtering of the generality of complex-
valued signals. The proposed ESN has been derived based
on augmented complex statistics, thus making it suitable
for both second-order circular and noncircular signals. For
generalities, a nonlinear output layer has been introduced,
and to deal with signals with large dynamics, an adaptive
amplitude has been introduced into the output layer of the
augmented ESN. The proposed augmented ESNs have been
shown to exhibit theoretical and practical advantages over
their conventional counterparts. This has been verified through
comprehensive simulations on both synthetic noncircular data
and real-world wind measurements, and over a range of
parameters.
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