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Abstract

A real-time approach for the identification of second order noncircularity (im-

properness) of complex valued signals is introduced. This is achieved based

on a convex combination of a standard and widely linear complex adaptive

filter, trained by the corresponding complex least mean square (CLMS) and

augmented CLMS (ACLMS) algorithms. By providing a rigorous account of

widely linear autoregressive modelling the analysis shows that the monitoring

of the evolution of the adaptive convex mixing parameter within this structure

makes it possible to both detect and track the complex improperness in real

time, unlike current methods which are block based and static. The existence

and uniqueness of the solution is illustrated through the analysis of the conver-

gence of the convex mixing parameter. The analysis is supported by simulations

on representative datasets, for a range of both proper and improper inputs.
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1. Introduction

Complex valued statistical processing is a well established area; it deals

with detection, estimation and adaptive signal processing, and has found a

large number of applications across the engineering disciplines. For instance,

in signal processing for communications the data symbols are complex by de-

sign, and many problems related to arrays and multipath processing in wireless

communications are conveniently represented by both the amplitude and phase,

thus complex. Directional processes (radar, sonar, vector fields, bearings only

estimation), where both the “intensity” (amplitude) and “direction” (phase)

components carry the information, are also most conveniently analysed as com-

plex valued [1].

Statistics in C are typically treated as a straightforward extension of real

valued statistics, leading to the same generic solutions for most classic estima-

tors. For instance, the covariance matrix Czz = E{zzH} of a zero mean complex

vector z ∈ C
N×1 is obtained by replacing the vector transpose operator (·)T in

the real covariance matrix E{xxT } with the Hermitian transpose in C. Whereas

most practical algorithms have been developed based on this assumption [2, 3],

the statistics of complex variables show that this approach is optimal only for

second order circular (or proper) complex random processes [4, 5], for which

the probability distribution is rotation invariant, thus limiting the number of

applications [6].

Recently, “augmented” complex statistics have established that for optimal

second order statistical modelling of the generality of complex signals we need to

take into account both the covariance matrix Czz and pseudocovariance matrix

Pzz, defined as Pzz = E{zzT }. These two matrices are conveniently combined

into the “augmented covariance matrix”, calculated as

Rzz = E{zaz
H
a } =





Czz Pzz

P∗

zz
C∗

zz



 , (1)

where the augmented complex vector za is given by

za =
[

z, z∗
]T

, (2)
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and the symbol (·)∗ denotes the complex conjugation.

The rotation invariant distributions associated with circular signals imply

equal powers in the real and imaginary part, and thus a vanishing pseudoco-

variance matrix of a proper zero mean random complex signal1, that is, Pzz = 0.

Notice that complex circularity is a wider notion than properness - it is a prop-

erty of the probability density function (rotation-invariance) while properness

is a second order property indicating a vanishing pseudocovariance matrix [7].

Thus, the modelling of noncircular data based on the covariance matrix only is

generally inadequate2 [5], whereas the modelling of proper complex processes

based on augmented statistics (1) is second order optimal but involves additional

computational complexity. Therefore, the identification and tracking of the na-

ture of complex valued signals (degree of noncircularity) is a key to efficient

statistical signal processing and should ideally be performed in real time.

Signal modality characterisation has been developed in Physics to reveal

changes in the nature of real world data (nonlinear, sparse, deterministic, stochas-

tic [8]), and is only just being adopted in signal processing [9, 10]. Statistical

hypothesis testing based measures for the validity of complex representation do

exist [11, 6], however, such tests are difficult to generalise for measuring the

degree of noncircularity. Existing measures of the degree of noncircularity are

typically block-based deterministic functions, based e.g. on multivariate asso-

ciations in real valued vectors as a measure of the linear dependence between

z and z∗. The circularity index in [12] was introduced as a function of canoni-

cal correlations; it was subsequently made more flexible based upon likelihood

measures, such as the generalised likelihood ratio tests (GLRT) in [13] and [14].

Whereas such block based tests are accurate and intuitive for off-line processing

of stationary signals, they are unsuitable in real time processing and for real

1For illustration, consider a complex number z = x + y. Then zzT = x2
− y2, which for

σ2
x = σ2

y vanishes upon applying the statistical estimation operator.
2Unless we have a special case of a standard autoregressive process driven by a doubly

white noise with different powers in the real and imaginary part, as shown in Section 2.
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world applications.

To this end, we extend our earlier work in [15, 16] to propose a flexible

method for the identification and tracking of the degree of (non)circularity of

the generality of complex valued signals. The proposed approach employs a

collaborative adaptive filter, based on a convex combination of the complex least

mean square (CLMS) [3] and augmented CLMS (ACLMS) [17], thus facilitating

real time adaptive mode of operation. The evolution of the convex mixing

parameter within this structure is shown to quantify the time varying degree

of improperness of a complex signal. The analysis is supported by illustrative

simulations on both synthetic signals and real world wind modelling.

2. Widely Linear Estimation and Autoregressive Modelling

Consider the standard mean square error (MSE) estimator of a real valued

signal y in terms of another observation x, that is

ŷ = E[y|x]. (3)

For zero mean, jointly normal y and x, the solution is the linear estimator

ŷ = hTx, (4)

where h is a coefficient vector and x the regressor vector. By continuation, in

standard MSE in the complex domain (based on only the covariance matrix), it

is assumed that3

ŷ = E{y|z} → ŷ = hHz.

However, it is important to realise that both the real and imaginary parts of

the complex number z = zr + zi can be estimated using a real MSE estimator

3Both y = h
T
z and y = h

H
z are correct, yielding the same output and the mutually

conjugate coefficient vectors. The latter form is more common and the former was used in

the original CLMS paper [3]; in this work we will use the first form.

4



in (3), thus giving [18]

ŷr = E[yr|zr, zi] & ŷi = E[yi|zr, zi],

thus ŷ = E[yr|zr, zi] + E[yi|zr, zi]. (5)

Upon employing the identities zr = (z + z∗)/2 and zi = (z − z∗)/2, we arrive

at

ŷ = E[yr|z, z
∗] + E[yi|z, z

∗], (6)

yielding the “widely linear” estimator for general complex signals (both proper

and improper) in the form

ŷ = hT z+ gT z∗, (7)

where h and g are the coefficient vectors of the widely linear model. For more

detail on augmented complex statistics, widely linear models, and their appli-

cations in adaptive signal processing see [6, 19, 20, 21].

2.1. Performance Bounds of the Standard Autoregressive Model

The standard autoregressive AR(n) model of order n (in R or C) is described

by

z(k) = a1z(k − 1) + · · ·+ anz(k − n) + q(k) = aT z(k) + q(k), (8)

where a = [a1, . . . , an]
T are the fixed AR coefficients, z(k) = [z(k−1), . . . , z(k−

n)]T the regressor vector, and q(k) the driving doubly white Gaussian noise

(proper or improper). Using the Yule-Walker equations, the AR coefficients can

be found from [22]

a∗ =C−1
zz

c

















a∗1

a∗2
...

a∗n

















=

















c(0) c∗(1) . . . c∗(n− 1)

c(1) c(0) . . . c∗(n− 2)
...

...
. . .

...

c(n− 1) c(n− 2) . . . c(0)

















−1 















c(1)

c(2)
...

c(n)

















(9)
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where c = [c(1), c(2), . . . , c(n)]T is the time shifted correlation vector. Observe

that using the model in (8) it is possible to generate both proper and improper

linear processes, depending on the nature of the doubly white driving noise q(k).

To evaluate the advantage of widely linear over strictly linear stochastic

modelling, consider again the linear and widely linear estimates of a random

process z(k) given respectively by [23]

ẑl(k) =aT z(k), (10)

ẑwl(k) =hT z(k) + gT z∗(k). (11)

Then, the corresponding optimal AR estimation errors are given by

e2l =E[|z(k)|2]− E[|ẑl(k)|
2] = cT C∗

−1

zz
c∗ + σ2

q − cT C∗
−1

zz
c∗ = σ2

q

e2wl =E[|z(k)|2]− E[|ẑwl(k)|
2] = cT C∗

−1

zz
c∗ + σ2

q − rTR∗
−1

zz
r∗ (12)

where σ2
q denotes the driving noise variance and r = [c(1), . . . , c(n), p∗(1), . . . ,

p∗(n)]T is the corresponding time shifted correlation vector of the augmented

covariance matrix Rzz, defined in (1).

2.2. Processes Generated by Standard Strictly AR Models

In standard autoregressive modelling in the complex domain, the only re-

quirement on the driving noise q(k) is its double whiteness, that is, the real and

imaginary part are jointly white and uncorrelated - there are no requirements

on the particular distributions or variances in the noise channels. Depending

on the nature of the driving noise (doubly white circular, doubly white noncir-

cular, general noncircular) there are three possible scenarios for the circularity

properties of the processes generated by the standard AR model.

• Doubly white circular noise (Fig. 1(a)): In this case Pqq = 0, qr(k)⊥qi(k),

and σ2
qr

= σ2
qi
; The resulting AR process is also circular (Fig. 2(a)), and

from (12) we have

e2l = e2wl, (13)

and thus such process can be optimally modelled by a standard AR model.
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(a) AR(4) driven by circular

noise
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(b) AR(4) driven by doubly

white noncircular noise
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(c) AR(4) driven by general

noncircular noise

Figure 1: Distributions of an AR(4) process for different realisations of the driving noise

• Doubly white improper noise (Fig. 1(b)): In this case Pqq 6= 0, qr(k)⊥qi(k)

and σ2
qr

> σ2
qi
. The resulting AR process is therefore second order non-

circular, as shown in Fig. 2(b). From (10)–(12) the error of the standard

linear AR process driven by q(k) is

e(k) = z(k)− ẑl(k) = q(k). (14)

Since the innovation e(k) is uncorrelated with z(k) and z∗(k), then the

standard AR model is second order optimal and, therefore, the errors of

the standard and widely linear estimator are equal

e2l = e2wl = σ2
q , (15)

illustrating that when noncircular linear processes are generated by a dou-

bly white noncircular noise which drives standard AR models, there is no

advantage in using the widely linear model [24].

• General noncircular driving noise (Fig. 1(c)): In this case Pqq 6= 0 and the

resulting standard AR process is noncircular (Fig. 2(c)). The advantage

of the widely linear model over the linear model is then assessed from

δe2 =e2l − e2wl

=E[|z(k)|2]− E[|ẑl(k)|
2]−

(

E[|z(k)|2]− E[|ẑwl(k)|
2]
)

=E[|ẑwl(k)|
2]− E[|ẑl(k)|

2]

=rTR∗
−1

zz
r∗ − cT C∗

−1

zz
c∗, (16)

7



−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.5

1

C

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.5

1

P

(a) AR(4) driven by doubly

white circular noise
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(b) AR(4) driven by doubly

white noncircular noise
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(c) AR(4) driven by general

noncircular noise

Figure 2: Covariance (top) and pseudocovariance (bottom) of a standard AR(4) model driven

by different driving noises

Following the approach in [18], as shown in Appendix A, this can be

rewritten as

δe2 =
[

p− P∗

zz
C∗

−1

zz
c∗
]H [

Czz − PzzC
∗
−1

zz
P∗

zz

]

−1 [

p− PzzC
∗
−1

zz
c∗
]

. (17)

Figures 1 and 2 illustrate the properties of distributions and correlation struc-

tures for the processes generated by a standard AR model, driven by the three

classes of noises discussed.

2.3. Widely Linear Autoregressive Modelling

The widely linear AR (WLAR) model caters for the complete (augmented)

second order complex statistics, and is given by (based on (7))

z(k) = h1z(k − 1) + g1z
∗(k − 1) + · · ·+ hnz(k − n) + gnz

∗(k − n) + q(k) (18)

The Yule-Walker equations for the coefficients of the widely linear model are

then given by





h∗

g∗



 =





Czz Pzz

P∗

zz
C∗

zz





−1 



c

p∗



 , (19)

where h denotes the coefficient vector of the standard complex AR model and

g the coefficient vector of the conjugate part of the WLAR. To illustrate the

second order optimality of this method, we shall apply the widely linear normal
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(a) Original Ikeda map
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(b) Widely linear AR(4)

model of the Ikeda map
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(c) Standard linear AR(4)

model of the Ikeda map

Figure 3: Covariance (top) and pseudocovariance (bottom) of the Ikeda map models

equations (19) to estimate parameters of a WLAR(4) model generated from the

nonlinear and noncircular Ikeda map, described by

x(k + 1) =1 + u [x(k) cos t(k)− y(k) sin t(k)] , (20)

y(k + 1) =u [x(k) sin t(k) + y(k) cos t(k)] , (21)

where u is a parameter and

t(k) = 0.4−
6

1 + x2(k) + y2(k)
. (22)

The resulting covariance and pseudocovariance functions are shown in Fig. 3; ob-

serve that unlike the standard AR model, the WLAR model caters for improper

signals, as indicated its ability to model both the covariance and pseudocovari-

ance.

3. Collaborative Adaptive Filter for the Tracking of Noncircularity

The proposed approach for the assessment of the signal noncircularity is

based on a collaborative combination of CLMS and ACLMS trained subfilters,

and is an extension of our earlier work in [16]. All the filter parameters are

updated by minimising the cost function

J (k) =
1

2
|e(k)|2 =

1

2
|d(k)− y(k)|2. (23)
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The CLMS is described by [3]

ec(k) =d(k)− yc(k),

yc(k) =hT
c (k)z(k),

hc(k + 1) =hc(k) + µcec(k)z
∗(k), (24)

where h(k) = [h1(k), h2(k), . . . , hN (k)]T is the filter coefficient vector, d(k) and

ec(k) are the desired response and output error at time instant k and µ is the

learning rate. The ACLMS utilises the full second order statistical information

available by using the widely linear model and is given by [17, 25]

ea(k) =d(k)− ya(k),

ya(k) =hT
a (k)z(k) + gT

a (k)z
∗(k),

ha(k + 1) =ha(k) + µaea(k)z
∗(k),

ga(k + 1) =ga(k) + µaea(k)z(k). (25)

The collaborative filter, shown in Figure 4, consists of two independently adapted

subfilters, operating in the prediction setting, sharing the common input z(k)

and the desired signal d(k). The convex combination of the subfilter outputs

z(k)

a

(k)
a

c

c

CLMS

ACLMS

widely linear filter

standard filter

e

(k)y

(k)y

(k)e

(k)w

(k)w e(k)

+

+

_

+

_

+

_

+

(k)λ1−

(k)λ

Σ

Σ

Σ

d(k)

Σ
y(k)

Figure 4: Hybrid filter structure

yc(k) and ya(k) forms the overall output y(k), given by

y(k) = λ(k)yc(k) +
(

1− λ(k)
)

ya(k), 0 ≤ λ(k) ≤ 1 (26)
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where λ(k) is the real-valued convex mixing parameter, whose update is obtained

from

λ(k + 1) = λ(k)− µλ∇λJ (k)|λ=λ(k), (27)

where µλ is the step size. Since the input to the filters is complex, the error

e(k) is also complex, and therefore the gradient

∇λJ (k)|λ=λ(k) =

{

e(k)
∂e∗(k)

∂λ(k)
+ e∗(k)

∂e(k)

∂λ(k)

}

. (28)

can be evaluated as

∂e(k)

∂λ(k)
= yc(k)− ya(k), (29)

∂e∗(k)

∂λ(k)
=

(

yc(k)− ya(k)
)

∗

, (30)

yielding the update of the mixing parameter in the form

λ(k + 1) = λ(k) + µλ

[

e(k)
(

yc(k)− ya(k)
)

∗

+ e∗(k)
(

yc(k)− ya(k)
)

]

. (31)

Due to the convex nature of the collaborative filter, providing at least one

of the subfilters converges the collaborative filter is guaranteed to converge [26],

provided the mixing parameter remains within the range [0, 1]. Several ap-

proaches have been proposed for this purpose, however, as our aim is to track

the behaviour of the mixing parameter, we cannot interfere with the evolution

of λ, and a hard bound4 on the values of λ is used when λ > 1 or λ < 0.

3.1. Convergence of the Mixing Parameter

The convergence of the CLMS and ACLMS for both proper and improper

inputs has been analysed in [27, 28], and a rigorous account of the convergence of

collaborative filters in [26]. Since the linear and widely linear adaptive filter are

adapted independently, results in [27, 28] also apply to the CLMS and ACLMS

subfilters within the collaborative filter in Fig. 4. We therefore only need to

illustrate the ability of the collaborative filter to identify the noncircularity of the

4In practice this is seldom necessary.
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input in real time; for the structure in Fig. 4 this means that for proper signals

the output of a collaborative filter is dominated by the strictly linear CLMS

and λ → 1, and for improper signals the ACLMS trained subfilter prevails and

λ → 0.

Without loss in generality assume that the desired response can be expressed

as [29]

d(k) = hT
o z(k) + gT

o z
∗(k) + q(k), (32)

where ho and go are the optimal Wiener filter weights and q(k) is doubly white

noise, so that the minimum mean squared error Jmin = σ2
q . In the steady

state both the subfilters converge towards the optimal values of their respective

coefficient vectors hco, hao and gao.

We next illustrate the principle of the proposed solution for the two extremes

- purely circular and purely noncircular inputs.

• Circular input signal. In this case hco = hao = ho and gao = go = 0,

and from (26) in the steady state, the overall instantaneous output error

becomes

e(k) =hT
o z(k) + gT

o z
∗(k) + q(k)− λ(k)yc(k)−

(

1− λ(k)
)

ya(k)

=hT
o z(k) + gT

o z
∗(k) + q(k)− λ(k)hT

o z(k)−
(

1− λ(k)
)

hT
o z(k)

=q(k). (33)

Substitute into the update for the mixing parameter in (31) to yield the

evolution of the mixing parameter in the form

λ(k + 1) =λ(k) + µλ

[

e(k)
(

yc(k)− ya(k)
)

∗

+ e∗(k)
(

yc(k)− ya(k)
)

]

=λ(k) + µλq(k)
(

hH
o z∗(k)− hH

o z∗(k)
)

+ µλq
∗(k)

(

hT
o z(k)− hT

o z(k)
)

=λ(k). (34)

Since the CLMS initially converges faster than the ACLMS [28], and there-

fore in the beginning of adaptation the collaborative filter favours the

12



CLMS trained subfilter, the convex mixing parameter λ → 1, thus cor-

rectly reflecting the circular nature of the input.

• Noncircular input signal. For noncircular inputs, upon convergence hao =

ho 6= hco and gao = go, and the overall output error becomes

e(k) =hT
o z(k) + gT

o z
∗(k) + q(k)− λ(k)yc(k)−

(

1− λ(k)
)

ya(k)

=hT
o z(k) + gT

o z
∗(k) + q(k)− λ(k)hT

coz(k)

−
(

1− λ(k)
)(

hT
o z(k) + gT

o z
∗(k)

)

=q(k) + λ(k)
(

hT
o z(k) + gT

o z
∗(k)− hT

coz(k)
)

. (35)

Substituting this result into the update of the mixing parameter (31) gives

λ(k + 1) =λ(k) + µλ

[

e(k)
(

yc(k)− ya(k)
)

∗

+ e∗(k)
(

yc(k)− ya(k)
)

]

=λ(k) + µλe(k)y
∗

c (k)− µλe(k)y
∗

a(k) + µλe
∗(k)yc(k)

− µλe
∗(k)ya(k)

=λ(k) + µλ

[

q(k)hH
coz

∗(k) + q∗(k)hT
coz(k)− q(k)hH

o z∗(k)

− q∗(k)hT
o (k)z(k)− q(k)gH

o z(k)− q∗(k)gT
o (k)z

∗(k)

+ 2λ(k)
(

hT
coz(k)h

H
o z∗(k) + hT

coz(k)g
H
o z(k)− hT

coz(k)h
H
coz

∗(k)

+ hH
coz

∗(k)hT
o z(k) + hH

coz
∗(k)gT

o z
∗(k)− hT

o z(k)h
H
o z∗(k)

− hT
o z(k)g

H
o z(k)− gT

o z
∗(k)hH

o z∗(k)− gT
o z

∗(k)gH
o z(k)

)

]

.

(36)

On applying the statistical expectation operator and employing the stan-
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dard independence assumptions5, we have

E[λ(k + 1)] =E[λ(k)]

[

1 + 2µλ

(

E[hT
coz(k)z

Hh∗

o] + E[hT
coz(k)z

T (k)g∗

o]

− E[hT
coz(k)z

H(k)h∗

co] + E[hH
coz

∗(k)zT (k)ho]

+ E[hH
coz

∗(k)zH(k)go]− E[hT
o z(k)z

H(k)h∗

o]

− E[hT
o z(k)z

T (k)g∗

o]− E[gT
o z

∗(k)zH(k)h∗

o]

− E[gT
o z

∗(k)zT (k)g∗

o]
)

]

. (37)

For clarity6, define the inverse Schur complement of the conjugate aug-

mented covariance as A =
(

Czz − PzzC
∗
−1

zz
P∗

zz

)

−1

and A∗ = C∗
−1

zz
+

C∗
−1

zz
P∗

zz
APzzC

∗
−1

zz
, then from (A.4) and (A.5) we have

ho =
[

C∗
−1

zz
+ C∗

−1

zz
P∗

zz
APzzC

∗
−1

zz

][

c∗ − P∗

zz
C−1
zz

p
]

=C∗
−1

zz
c∗ − C∗

−1

zz
P∗

zz
Ap+ C∗

−1

zz
P∗

zz
APzzC

∗
−1

zz
c∗, (38)

h∗

o =A
[

c− PzzC
∗
−1

zz
p∗

]

, (39)

go =A
[

p− PzzC
∗
−1

zz
c∗
]

, (40)

g∗

o =
[

C∗
−1

zz
+ C∗

−1

zz
P∗

zz
APzzC

∗
−1

zz

][

p∗ − P∗

zz
C−1
zz

c
]

=C∗
−1

zz
p∗ − C∗

−1

zz
P∗

zz
Ac+ C∗

−1

zz
P∗

zz
APzzC

∗
−1

zz
p∗. (41)

Substitute into (37) to give the expression for the evolution of the mixing

5Namely that the input signal and filter coefficient vectors are zero mean, stationary, jointly

normal and with finite moments; the successive increments of filter weights are independent

of one another and the error and input vector sequences are statistically independent of one

another [30, 22, 31].
6For more detail see Appendix A.
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parameter λ for improper signals, in the form

E[λ(k + 1)] =E[λ(k)]

(

1 + 2µλ

[

−cHC−1
zz

P∗

zz
ATPzzAc+ pTATPzzAc

− pTATp∗ + cHC−1
zz

P∗

zz
ATp∗

+ cHC−1
zz

P∗

zz
ATPzzC

−1
zz

PzzC
∗
−1

zz
P∗

zz
Ac

− pTATPzzC
−1
zz

PzzC
∗
−1

zz
P∗

zz
Ac

]

)

=E[λ(k)]

(

1 + 2µλ

[

(

pT − cHC−1
zz

P∗

zz

)

AT
(

PzzAc− p∗

− PzzC
−1
zz

PzzC
∗
−1

zz
P∗

zz
Ac

)

]

)

=E[λ(k)]

(

1 + 2µλ

[

(

pT − cHC−1
zz

P∗

zz

)

AT
(

PzzC
−1
zz

c− p∗
)

]

)

=E[λ(k)]

(

1 + 2µλ

[

(

PzzC
−1
zz

c− p∗
)T (

Czz − PzzC
∗
−1

zz
P∗

zz

)

−1

(

p− PzzC
∗
−1

zz
c∗
)

]

)

=E[λ(k)]
(

1− 2µλδe
2
)

, (42)

where δe2 denotes the performance advantage of the widely linear model

over the standard linear model, as shown in (17). Since both the learning

rate µλ and δe2 are positive, the mixing parameter λ(k) converges towards

zero (favouring the ACLMS trained subfilter) whenever the widely linear

filter outperforms the standard filter, that is, for second order noncircular

(improper) inputs.

These two cases reflect the ability of a collaborative CLMS-ACLMS filter to

identify and track the circular/noncircular nature of real-world inputs. Due to

the convexity of the mixing parameter λ, by continuity the analysis is also valid

for any degree of noncircularity and for processes with time varying statistics.

The usefulness of this approach is illustrated through representative simulation

studies.
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4. Simulations

For all the simulations µa = µc = 0.001, µλ = 0.05 and the initial value of

λ = 0.5 (neither proper or improper). Recall that λ → 1 corresponds to the filter

being dominated by the CLMS subfilter (indicating a circular signal), whereas

λ → 0 indicates the collaborative filter is dominated by the ACLMS subfilter,

indicating a noncircular input. All the simulations based on synthetic data

were averaged over 100 independant trials while the real world wind example

was analysed over a single trial.

Figure 5 shows the evolution of the mixing parameter λ for an AR(4) process,

a WLAR(4) model of the Ikeda signal, and for the original noncircular Ikeda

signal. The linear circular AR(4) process was a standard AR model driven by

doubly white noise, while the WLAR(4) process was calculated from (18)-(19).

As desired, for the linear AR(4) signal the value of the mixing parameter λ

was between 0.8 and 0.9, indicating its circular nature, whereas for the original

Ikeda process, the value of the mixing parameter approached zero indicating its

second order noncircular (improper), also illustrated in Fig. 3. For the WLAR(4)

model of the Ikeda signal (improper), the mixing parameter moved initially

upwards, indicating the faster convergence of the CLMS, but then settled to

approximately λ = 0.1, illustrating that the widely linear model of the improper

Ikeda process is better modelled by the ACLMS. This behaviour of λ is also in

line with the convergence analysis in Section 3.1.

In the next set of simulations, the effect of the nature of the driving noise on

the proper/improper nature of the standard AR(4) model was investigated, in

order to verify the proposed solution on the three classes of data elaborated in

Section 2.2. Figure 6 shows that both the cases driven by the doubly white noise

were optimally modelled by a standard AR model, conforming with the analysis

in (13)–(17). Although, theoretically such inputs are equally modelled by CLMS

and ALCMS (in the steady state), the CLMS is initially faster converging and

was thus the dominant subfilter, as indicated by λ evolving towards unity. The

improper AR signal driven by a general noncircular noise was correctly better
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Figure 5: Evolution of the mixing parameter λ for the linear circular AR(4) process, the

WLAR(4) model of the Ikeda map (improper) and the original noncircular Ikeda signal

modelled by the widely linear ACLMS algorithm, as reflected in the the value

of the convex mixing parameter λ approaching zero, indicating the improper

nature of the output.

The previous two sets of simulations were conducted for static processes. To

illustrate the ability of the collaborative filter to track changes in the circularity

of a signal, in a dynamically changing environment, in the next experiment

the input was alternated between the proper AR(4) process and the improper

Ikeda map in the first setting, and between the same AR(4) signal and the

improper WLAR(4) model of the Ikeda signal in the second setting with the

segment lenght fixed to 1000 samples. The results shown in Fig. 7 illustrate

that the proposed approach was able to accurately track these changes. Finally,

Fig. 8 shows the behaviour of the convex mixing parameter λ when the segment

length of the alternating proper/improper inputs changed over time, illustrating

flexibility and real time tracking ability of the proposed approach.
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Figure 6: Evolution of the mixing parameter λ for a standard linear AR(4) model driven by
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either widely linear AR(4) model of the Ikeda process or the original Ikeda signal
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Figure 8: Evolution of the mixing parameter λ for a signal alternating from a proper AR(4)

to an improper linear AR(4) process with a varying segment duration
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Figure 9: Wind recordings in a complex [speed,direction] representation

4.1. Improperness of Wind Data

Wind modelling is a key in several renewable energy applications; wind is

normally measured as a bivariate process of direction and speed [32]. From

Fig. 9 it is clear that wind can be represented as a vector of speed and direction

components in the North – East coordinate system; the wind speed v and

direction θ are then combined to form a complex signal

V = v · eθ. (43)

The wind data used was measured over a 24 hour period sampled at 50Hz

19



(a) Wind speed readings (b) Wind magnitude

Figure 10: Wind over a 24 hour period in an urban environment

in an urban environment7. The wind speed readings (Fig. 10(a)) were taken in

the north–south (VN ) and east–west (VE) directions, where

v =
√

V2
E +V2

N and θ = arctan

(

VN

VE

)

, (44)

were used to give the complex signal (43). The magnitude of the complex signal

obtained from combining the two speed readings V is shown in Fig. 10(b).

It can be seen from the recordings that there is a distinct ‘calm’ period in

the wind diagrams in the late evening and the early morning between 18:00

and 08:00 compared to the rapid fluctuations in the wind at other times. To

best assess the performance of the collaborative filter for detecting the level

of noncircularity of the wind data, two periods of 1 hour duration each were

assessed, one from the ‘calm’ period between 04:00-05:00 and one from the ‘high’

wind dynamics between 16:00-17:00. The covariance and pseudocovariance plots

for both sections, shown in Fig. 11, show that the ‘calm’ wind section has a close

to zero pseudocovariance indicating the near-circular nature of ‘calm’ wind and

an improper nature of ‘high’ wind. The comparison of the evolution of the

mixing parameter λ for the ‘calm’ and ‘high’ sections of wind are shown in

Fig. 12. As desired, for the ‘calm’ wind the value of λ → 1, indicating its proper

nature, whereas for the ‘high’ wind, the value of λ indicated its rapidly changing

7The wind data was provided by Prof. Kazuyuki Aihara and Dr Yoshito Hirata from the

Institute of Industrial Science, University of Tokyo.
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(a) Calm wind (b) High wind

Figure 11: Normalised covariance (top) and pseudocovariance (bottom) for 1 hour sections of

wind data

and predominantly improper nature.

5. Conclusions

We have proposed an online adaptive test for the identification and assess-

ment of the proper/improper nature of complex valued signals. By revisiting

widely linear AR modelling this has been achieved based on a collaborative

adaptive filtering approach, whereby each subfilter has been chosen so as to be

optimal for either proper or improper input processes. It has been shown that

for circular data the convex mixing parameter within this structure favours the

standard, strictly linear, subfilter whereas for noncircular data it favours the

widely linear subfilter. The analysis has addressed the convergence of the so-

lution when identifying such processes, and the simulations illustrate that the

evolution of the mixing parameter correctly reflects the proper/improper nature

of the data. It has also been shown that unlike the existing static, block based,

approaches the proposed method has the ability to both identify and track the

degree of circularity of a signal in real time, a crucial feature in time-varying

scenarios, such as in wind modelling for renewable energy applications.
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Figure 12: Evolution of the mixing parameter λ(k) for 1hr of ‘calm’ wind and 1 hour of ‘high’

wind

Appendix A. Advantage of Widely Linear Model Over Standard Lin-

ear Model

To quantify the advantage of the WLAR model over the standard linear AR

model when modelling improper processes, we start from the normal equations

for the widely linear AR model and find the augmented covariance matrix Rzz

from

R∗

zz





h

g



 =r∗





C∗

zz
P∗

zz

Pzz Czz









h

g



 =





c∗

p



 , (A.1)

C∗

zz
h+ P∗

zz
g =c∗ −→ h =C∗

−1

zz

[

c∗ − P∗

zz
g
]

, (A.2)

Pzzh+ Czzg =p −→ g =C−1
zz

[

p− Pzzh
]

. (A.3)
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Solving this system of equations gives

C∗

zz
h+ P∗

zz

[

C−1
zz

[

p− Pzzh
]

]

=c∗

[

C∗

zz
− P∗

zz
C−1
zz

Pzz

]

h =c∗ − P∗

zz
C−1
zz

p

h =
[

C∗

zz
− P∗

zz
C−1
zz

Pzz

]

−1[
c∗ − P∗

zz
C−1
zz

p
]

, (A.4)

Pzz

[

C
∗

−1
zz

[

c∗ − P∗

zz
g
]

]

+ Czzg =p

[

Czz − PzzC
∗

−1
zz

P∗

zz

]

g =p− PzzC
∗

−1
zz

c∗

g =
[

Czz − PzzC
∗

−1
zz

P∗

zz

]

−1[
p− PzzC

∗

−1
zz

c∗
]

.

(A.5)

Using these values of h and g, the difference between the squared estimation

errors in (16) becomes

δe2 =cT
[

C∗

zz
− P∗

zz
C−1
zz

Pzz

]

−1 [
c∗ − P∗

zz
C−1
zz

p
]

+ pH
[

Czz − PzzC
∗
−1

zz
P∗

zz

]

−1 [

p− PzzC
∗
−1

zz
c∗
]

− cT C∗
−1

zz
c∗,

(A.6)

which can be rewritten as

δe2 =
[

p− P∗

zz
C∗

−1

zz
c∗
]H [

Czz − PzzC
∗
−1

zz
P∗

zz

]

−1 [

p− PzzC
∗
−1

zz
c∗
]

. (A.7)

Thus, as the matrix
[

Czz − PzzC
∗
−1

zz
P∗

zz

]

is positive definite, the term δe2 = 0

only when either
[

p− P∗

zz
C∗

−1

zz
c∗
]

= 0 or
[

p− PzzC
∗
−1

zz
c∗
]

= 0.
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