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SUMMARY

Despite being a de facto standard in sparse adaptive fdtetire two most important members of the
class of proportionate normalised least mean square (PNlaig®rithms are introduced empirically. Our
aim is to provide a unifying framework for the derivation dNEMS algorithms and their variants with
an adaptive step-size. These include algorithms with gradidaptive learning rates and algorithms with
adaptive regularisation parameters. Convergence aadsysiovided for the proportionate least mean square
(PLMS) algorithm in both the mean and mean square sense amtlb®@n its parameters are derived. An
alternative, more insightful approach to the convergemeyais is also presented and is shown to provide
an estimate of the optimal step-size of the PLMS. Incorjiugathe so obtained step-size into the PLMS
gives the standard PNLMS together with a unified frameworkrftsoducing other adaptive learning rates.
Simulations on benchmark sparse impulse responses suppapproach. Copyrigh©) 2014 John Wiley

& Sons, Ltd.
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1. INTRODUCTION

The least mean square (LMS) family of algorithms are a stahita the training of linear adaptive
filters [1]. The aim of the LMS algorithm is to minimise the cost functio

T (k) = 5e(k) 1)
and is described by

e(k) = d(k) - xT (k)w(k),
w(k +1) = w(k) + pe(k)x(k), )

wheree(k) is the output error at time instaht d(k) the desired signal, and k) = [z(k), ..., z(k —
N+ 1)]T andw(k) = [wi(k), ..., wn (k)]T are respectively the input signal and filter coefficient
vector for afilter of lengthV. Critical to the performance of the algorithm is the stegegiarameter

1 which defines how fast the algorithm is converging towards aptimal solution. Where the
optimal solution is not reached the step-size parameteradfects the misalignment between the
algorithm solution and the optimal solution.
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2 B. JELFS & D. P. MANDIC

To facilitate operation in a nonstationary environmengttis, to allow the filter to adapt
independently of the signal power in the tap input, the ndised LMS (NLMS) uses an adaptive
step-size

o)

"= e ©
where|| - |2 is the Euclidean norm. For practical reasons, the regaldois parameter is included
to prevent the weight update becoming unstable for inputoveccomprising of near to zero
elements. This would otherwise be interpreted as effdgtizdarge learning rate(k) leading to
divergence.

Due to the importance and wide range of practical applioatiof the LMS based algorithms,
research into modifications of this class of algorithms hasnba major topic in statistical and
adaptive signal processing communitie€d. [The selection of learning rate is critical to the
performance of all LMS-type algorithms. Ideally, we desre algorithm for which the speed of
convergence is fast and the steady state error is small whenating in a stationary environment.
In a nonstationary environment the algorithm is requirelaok the signal and as such the learning
rate should change according to the dynamics of the inpuiakig\ convenient way to improve
the convergence of linear adaptive filters in nonstatiomemyironments is to introduce a gradient
adaptive step-size (GASS). Approaches with a “linear” gmadadaptive learning rate based on
0J /0u include the algorithms by Benveniset al. [2], Mathews and Xie 3], and Ang and
Farhang 4]. Alternatively a “nonlinear” gradient adaptive stepesizased o7 /0e, such as the
Generalised Normalised Gradient Descent (GNGD) algor[thlptan be employed.

1.1. Proportionate NLMS

Both the LMS and NLMS algorithms perform in a suboptimal marnn sparse environments, [/]
where the impulse response of an unknown system has a nurhlzera elements. As such,
the development of adaptive filters designed specificaltystach environments has become an
increasingly large area of research, having particulardiegtpon in echo and adaptive noise
cancellation$,9].

For operation in sparse environments, the proportionat8I(PNLMS) [7] develops on the
NLMS algorithm to give an update which is proportional refato the size of the filter coefficients.
This is achieved by introducing a diagonal “tap selectiortriva G (k) within the coefficient
update ), giving the weight updater]

G (k)e(k)x(k)

Wikt =wE = rme

(4)
where

G(k) = diag[gi(k), ..., gn (K)]. (5)

The diagonal elements @ (k) define the proportionate amounts that each coefficient iatepldy
and the elementsg, (k) are given by

N
(k) = 1N duh),

¢n (k) = max {pmax (6, [w(k)|loo] ; [wn (F)[},

_ Pn (k)
gn(k) = (Z)(k) )

where the symbd| - || . denotes the infinity norm.
A number of modifications of the PNLMS have been propod€d1], however, the stability of
the algorithm has received little attention. The existipg@aches, such as Doroslovacki and Deng’s

n=1,...,N (6)
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 3

analysis 2], provide convergence proofs based on existing algoritreush as steepest descent,
and are not explicitly derived for PNLMS. Little attentios given to the fact that as the PNLMS
is constrained to the stability limits of NLMS/] and that it also inherits a problem frequently
encountered with NLMS, namely that for an ill-conditioneg input autocorrelation matrix or for
processes exhibiting large dynamics, the filter becomesblesf].

The PNLMS algorithm in its original form has been introduteged on empirical evidence and
subsequently most of its variants have also been designedgimilar manner. It would, however,
be beneficial for both education and practical purposebeifierivation and analysis of the class of
PNLMS algorithms could be conducted based on a unified thieaf@latform.

Our aim is therefore two-fold: firstly, following the ressiiin [13], we provide a unified approach
to the derivation of the class of PNLMS algorithms; seconékpanding on these results we
present adaptive step-size extensions of PNLMS algoritiased orifi—{ = 0 [2-4] and also on the
adaptation of the regularisation paramet@s]. Simulations on benchmark sparse systems support
the analysis.

2. DERIVATION OF THE CLASS OF PNLMS ALGORITHMS

Originally Duttweiler [7] introduced the PNLMS algorithmi} as a version of NLMS, however, to
unify the analysis it is advantageous to start from the LM3hE same vein as the Duttweiler result,
we shall modify the LMS to suit sparse environments, thusiging a basis to derive the class of
PNLMS algorithms in a generic way. The update of this “projomiate LMS” (PLMS) algorithm
thus becomes

w(k+1) = w(k) + nG(k)e(k)x(k), )

that is, the PLMS is equips the standard LMS with the “tapc®le” term G (k). The use of tap
selection also has a geometric justification, as foNatap LMS the weight update lives R" and
the direction of the update is dominated by the largest etémkthe input vectox (k) [14]. We
shall now provide a rigorous derivation of the standard PN, Mased on the convergence analysis
of PLMS in (7); this approach is supported by the original analysis peréal by Duttweiler 7]
which analyses a form of the PLMS algorithm with fixed gairtriliitors G.
2.1. Convergencein the Mean
Assume without a loss in generality the desired responséeaxpressed as )

d(k) = XT(k)wo + q(k)v (8)

wherew, is the optimal weight vector ang(k) is zero mean Gaussian noise with variaage
uncorrelated withx (k). This allows us to describe the PLMS by

e(k) =x" (k)wo + q(k) — x* (k)yw(k),
w(k +1) =w(k) + pG(k)x(k)x’ (k)w, — puG(k)x(k)x" (k)w(k) + uq(k)G(k)x(k). (9)

Upon subtracting the optimal weight vecter, from both sides, the weight error vecto(k) =
w(k) — w, can be expressed as

vik+ 1) =v(k) — pG(R)x(k)x" (k)v(k) + pg(k)G (k)x(k). (10)

We can now apply the statistical expectation operator anpl@nthe independence assumptibns
to yield

Blv(k +1)] = (I - uG(k)Ex(k)x" (k)]) E[v(k)] + nG(k)Elq(k)x(k)],

TNamely that the input signal and filter coefficient vectors aero mean, stationary, jointly normal and with finite
moments; the successive increments of tap weights are éndept of one another and the error and input vector
sequences are statistically independent of one anather [
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4 B. JELFS & D. P. MANDIC

=(I - uG(k)R)E[v(k)], (11)

wherel is the identity matrix andR = E[x(k)x(k)T] is the autocorrelation matrix of the input
vector. Since the correlation matiX is symmetric and positive semidefinite, it has the following
decomposition

R = QAQT, (12)

where A = diag(A1, Ae,..., Ay) are the eigenvalues an@ is the orthogonal matrix of the
corresponding eigenvectors. A rotation of the weight evestorv(k) by the eigenmatrixQ, that
is, v/ (k) = QTv(k), gives

V/(k+1) = (I-pGk)A)V (k). (13)

As (I — nG(k)A) is diagonal, every element of (k) evolves independently and converges to zero
if and only if, for all the eigenvalued — ng,\,.| < 1. Therefore, the PLMS converges only if it
converges for the maximum mode of convergence, that isAfQr.. Since\,,.. < >_(diagonal
elements oR) = tr[R], the condition for the convergence in the mean of the PLM®bees

0<p< (14)

2
tr[G(k)R]

Note that the termr|G (k)R] is equivalent tac” (k)G (k)x(k), however, for simplicity, for a white
i.i.d. input for whichR = ¢21, and using the identityr[AB] < tr[A]tr[B] andtr[G(k)] = N, we
have

0<p< (15)

No2’
2.2. Convergence in the Mean Square

To converge in the mean square the algorithm must firstly @gavin the mean, that is14) must
be satisfied. Based on the output err@y, (ve can arrive at the mean square error by squaring and
taking the expectation of both sides, to give

E[eQ(k)] = 05 +FE [(XT(IC)V(k))Q] —2F [q(k)xT(k;)v(k)] . (16)

Using the independence assumptions ahdk)v(k) = vT (k)x(k) and defining the weight error
vector correlation matrix akK (k) = E[v(k)vT (k)], results in

=tr [RK (k)] . a7
Thus, the expected value of the squared error becomes

&(k) = E[e*(k)] =Emin + Epmse(k)
=07 + tr[RK (k)]
where the final term of1(6) disappears due to the independence assumptinsg,|.. is the

minimum mean square error defined by the power of the nefs@nds x5z (k) is the excess mean
square error. The excess mean square error is a result di¢ghediefficients fluctuating around their
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 5

optimum values as they begin to converge. Using again tlaioot(12) andK' (k) = Q7K (k)Q
gives

(k) = oF + tr[K'(k)A]. (18)

Since matrixA is diagonal, we have

N
(k) =op + Z ity (k) (19)

wherex!, are the diagonal elementsKf.
It is convenient to assess the mean square performance ofgarttan in terms of the
misadjustment

M- SeMsE €EMSE7 (20)

2
g'rnin Uq

which following the approach fronip, 17] can be shown to be

ZN HgiNi
1=1 2(1—pg; (k)A\i)

M= 1)
N i (k)
1= s
Lu[G(b)R) o2

T Lun(GRR]

Thus, for a white i.i.d. input, the mean square erf¢k) converges asymptotically t(co) =
jmin - O—g for

2 2
tr[G(k)R] 02N’

0<p< (23)

which gives the bound on the step-size of PLMS.

2.3. Introducing PNLMSvia Normalisation of PLMS

We have shown that for convergence of PLMS in both the meantenchean square, the bound on
the step-size is given by

2
O<p< —XT(k;)G(k)x(k)' (24)
Incorporating this step-size into the PLM3 @ives the normalised PLMS (PNLMS)
w(k+1) = w(k) + ——————G(k)e(k)x(k), (25)

where0 < u < 2.

As the expansion dK’ (k) to obtain @1) is not straightforward, an alternative method is to recast
the PNLMS into the optimisation task performed by NLMS typgoaithms, that is, to minimise
the a posteriori erroé(k) = d(k) — x* (k)w(k + 1), as opposed to LMS which minimises the a
priori errore(k). We aim to arrive at the PNLMS by estimating the range of &g for which
|é(k)| < |e(k)]. This is achieved (following the approach from8]) by performing a first order
Taylor series expansion (TSE) [ef k)|? around|e(k)|?, that is

2 le(k)[?

ERIE =Ie®F + 2 00

Aw;(k) (26)
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6 B. JELFS & D. P. MANDIC

The partial derivative inZ6) can be obtained fron2f as

Oleh)? _ L N
w; (k) = —2e(k)z(k —i+ 1) = —2e(k)z;(k), i1=1,2,...,N (27)

while the update\w; (k) in (7), is given by
A substitution of 27)—(28) into (26) yields

N N
ek =le(k)]* — 2p [e(k) Zxxk)] le(k) ngmxi(k)]
=le(B)[? — 2ule(k)[*xT (k)G (k)x(k)
=le(k)” [1 — 2ux" (k)G(k)x(k)] . (29)
For the output error to vanish towards zerdias: oo we require
e(k)* < le(k)[* [1 — 2px" (k)G (k)x (k)] . (30)
As the squared error terms are non-negative this will odcamd only if
|1 —2ux" (k)G (k)x(k)| <1, (31)

resulting in the following bounds on the range of the steg-si
0 < < ;
" X RGHx(R)

These bounds are optimal, providing the first order TSE gavepod approximation of the a
posteriori erro (k). From (32), to minimise the a posteriori errefk) and equip the proportionate
LMS with an optimal learning rate we have

(32)

G(k)e(k)x(k)
xT (k)G (k)x(k)’
The original PNLMS was introduced empirically and uses thedard NLMS update to obtain its

optimal step-size. Notice that the update presented harpreaisely the form of what has become
the standard version of PNLMS]].

w(k+1)=w(k)+p (33)

2.3.1. Comparison of Different Formulations of PNLMS The above formulation of the PNLMS,
whilst having an update of (k) in line with that of the standard version of the PNLMS, dodfedi
in one point. In the original version of the PNLMS the update¢he proportionate tern@ (k) is
given by ) and has the form

N
S(k) =1/N > ¢u(k), (34)

n=1

resulting intr[G (k)] = N. However, in the more commonly used version of the PNLMS ¢neth
assumes the form

N
n=1
which results inr[G (k)] = 1. In this case the bound on the step-siz8) becomes
2 2
O<p< = (36)

tr[R]  xT(k)x(k)’
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 7

and results in an update @f(k) in the form of the original PNLMS4). As such, the version of the
update ofw (k) depends on the update Gf(k) used; the version of the PNLMS presented here is
therefore an optimal version and not a perfect replica dkeithe original Duttweiler version or the
more standard version.

Regarding the discrepancies between the PNLMS formulsitibthas been shown in§] that
when including a regularisation parameter in the standamdion of the PNLMS, as with the
NLMS, the PNLMS version is a scaled version of the NLMS regaé&tion by a factor ofV. One
advantage of using this formulation of the PNLMS is thatliak for the regularisation irrespective
of the proportionality component of the algorithm. In thiayythe regularisation of both the NLMS
and PNLMS are functions of the filter length, the signal variances2, and the signal to noise
ratio (SNR), making the choice of regularisation criticallow SNR conditions. This form of
regularisation has been shown to provide stability in stetiy environments for which adaptive
versions which also allow operation in nonstationary emvinents will be presented in Sectidr.

3. UNIFYING APPROACH TO GASS ALGORITHMS FOR PNLMS

Now that we have obtined the PNLMS as a result of an optinusgiiocedure, it is natural to equip
this approach with fast and robust learning, by consideadgptive learning rates. The optimal
learning rate obtained from the TSE of the a posteriori &ftby in (29) uses only the first term of
the expansion, that is, the partial derivatives with resfiew;,: = 1, ..., N, and thus the TSE26)
can be expanded to include the higher order terimsi() as

E(k)[2 = |e(k)[? — 2ule(k)2xT (k)G (k)x(k) + h.o.t.(k). (37)

Algorithms which take into account higher order statistias provide better modelling of the signal
distribution for non-Gaussian inputa(]. To account for the exclusion of the neglected higher order
terms of TSE 26), we next provide an insight into the extent to which the kigbrder terms
influence the algorithm.

The class of gradient adaptive step-size (GASS) algoriihoisde the algorithm proposed ][
which is based upon a gradient adaptation of the learnirgafathe LMS from ), or in the form
%ff) [3], where 7 (k) is the cost function). This algorithm is essentially a simplified version
of the Benvenistet al. algorithm P], where time varying filtered versions of the instantaneous
gradients of the cost function with respect to the learnatg are replaced by their instantaneous
values. In the algorithm of Ang and Farharg, [this time variant filtering of the instantaneous
gradients is replaced by a low pass filter with a fixed coeffici€o arrive at this class of algorithms
for PNLMS, we shall express the higher order terms fr8m @s

h.ot.(k) = 0(k)e(k). (38)

On the other hand, the GNGD class of algorithrsls [nake the parameterin the step-size of the
NLMS in (3) gradient adaptive based qﬁ% which for the PNLMS results in the higher order
terms in the form

h.o.t.(k) = —pe(k)e(k). (39)

By setting 37) to zero and solving for, we can now express the optimal step-sizes for the Mathews
and Xie type GASS algorithn8] for PNLMS as

n(k)
opt = A 4
ot = ST G (R)x(b) (40)
and the GNGD type step-size update for the PNLMS as
- . (41)
Hort = ST ()G (k)x(k) + (k)
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Sgnal Process. (2014)
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8 B. JELFS & D. P. MANDIC

Notice from @0) and @1) that there is a fundamental difference between the variatdp-size
algorithms with a “linear” multiplicative adaptive fact¢GASS framework) and GNGD, which
employs a “nonlinear” update of the adaptive learning réitee exact derivation of the update in
either case depends crucially on the weight sensitivitiés respect to the adaptive term within the
step-size.

3.1. Linear Update of the Adaptive Step-Sze

In this case, the terrh.o.t.(k) is written asd(k)e(k), so that a gradient adaptive step-size algorithm
similar to that of the Mathews and Xie algorithm for the LMSbmes

w(k+1)=w(k)+ xT(k;)glzl)f)x(k) G(k)e(k)x(k),
b+ 1) = ()~ 50 s,
2J (k) 0J (k) de(k) ow(k)

e(k)e(k — 1)xT (k)G (k — 1)x(k — 1)
xT(k—1)G(k—1)x(k—1) ’

n(k+1) = n(k)+p (42)

wheref is a small positive constant. In practice, learning ratesdrie be smaller than the optimal
ones and the termy(k) from above is often replaced by a small constawhich multiplies an
adaptive parameter, for instangg:) = ud (k).

The result in 42) is an approximation of the rigorous analysis provided byBmisteet al. [2]
where,

n(k +1) = n(k) + Be(k)x" (k)y(k) (43)
and

G(k — De(k — 1)x(k — 1)

or that of Ang and Farhand]
B Gk —1e(k—1x(k-1)
whereq is a constant such that< 1. For further detail see Appendix.
3.2. Nonlinear Update of the Adaptive Step-Sze
In the second case, the tefim.t. from (37) is written ash.o.t. = —pue(k)e(k), which allows us to

arrive at the GNGD type PNLMS algorithm, where the variatibthe time varyingu,,: is governed
in a nonlinear manner. The weight update of this algorithdeisved starting from

_ H
w(k+1)=w(k)+ <TG (R)x (k) + =(k) G(k)e(k)x(k). (46)

fThe optimal learning rates are usually derived for whitauis@and based on the independence assumptions.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Sgnal Process. (2014)
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 9

The parameter in (46) is then made gradient adaptive as

e(k+1) =e(k) = BVe(—1) T (k),
oJ (k)  0J(k) Oe(k) Ow(k)
de(k—1)  de(k) ow(k) Oe(k — 1)
e(k)e(k — 1)xTG(k)x(k — 1)
T (k= 1)Gk— Ux(k— 1) +e(k— 1
e(k)e(k — 1)xT(k)G(k — 1)x(k — 1)
xT(k—1)G(k — Dx(k — 1)+ e(k — 1)])*

ek +1) =e(k) — P

(47)

whereg is a small positive constant. The adaptation of the timegmgrterm in the denominator

of the above gradient adaptive learning rate compensatdbdadeficiencies in the derivation of
the step-size of the NLMSLB] and hence the PNLMS. The complete derivation can be found in
AppendixB.

4. SIMULATIONS

To illustrate the performance of the algorithms derivedhimitthe proposed GASS framework,
we ran simulations in a system identification setting andafoange of the algorithm parameters.
Learning curves were produced using the normalised misalkignt in dB, given by 0log [|[Wopt —
w||2/|lwopt]|3, averaged over 100 independent trials, whetg, = [w1 opt, .-, WN opt]” IS the
optimal filter coefficient vector. For all the algorithmsgetiparameterg and § were set to the
recommended values gf = 5/N and ¢ = 0.01 [7]. The regularisation parameterwas set to
e = 0.01 while for the adaptive- algorithme(0) = 0.01, whereas for the Ang & Farhang type
algorithm the learning rate. = 0.9. The sparse system under consideration was the benchmark
system analysed irf], a 100-tap channel with four nonzero taps located in pmsstil, 30, 35, 85].
For each trial, the input given to the channel was white Gansand the noise signal was an
independent white Gaussian noise with the SNR set to 20dBjnitial estimates of the filter
coefficientsw(0) were selected randomly in order to provide a range of diffelearning curves.

The performance of the standard PNLMS compared with thatefroposed algorithms for a
step-size ofu andn(0) = 0.1 is shown in Fig.1. For all the linear learning rate updates the step-
size was? = 0.01. In this case, the Benveniste and Farhang PNLMS type algosipffered faster
rates of convergence, but the PNLMS and adaptiedgorithms had a smaller steady state error,
with the Mathews algorithm in between them. Fig@reshows convergence curves for the same
parameter settings, except that for the linear learniregrtite parametet was set tg3 = 0.001. A
comparison of the performances of algorithms with “linél@drning rates in Fig2, with those in
Fig. 1 highlights the sensitivity issues associated with thedirearning rates and also the selection
of their parameters.

To illustrate the behaviour of the algorithms in typicatical operating conditions (simulating the
effect of close to zero inpuits the value of: andn(0) was increased t0.95, at which point PNLMS
is on the limit of stability. As shown in Fig3, with the value of3 = 0.01 the Benveniste algorithm
did not converge, and the Farhang algorithm offered a smstbady state error than the Mathews
algorithm. Observe that when the algorithms were operatirgitical conditions, the performance
of the algorithm with an adaptive regularisation factor w8 much improved compared to the
PNLMS. Figure4 illustrates that by reducing the value 6fto 5 = 0.001 causes the Benveniste
algorithm to converge, however, the performance was inviitie that of the adaptive algorithm.

§Notice from @0)—(41) that asx (k)G (k)x (k) — 0 then effectivelyu(k) — co. By makingu andn(0) large we achieve
the same effect, allowing a convenient comparison of thelfikeear, and variable-methods.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Sgnal Process. (2014)
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10 B. JELFS & D. P. MANDIC
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Figure 1. Performance comparison of the GASS PNLMS algwoistivith the standard PNLMS for = 0.1

andg = 0.01
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Figure 2. Performance comparison of the GASS algorithmis thi¢ PNLMS fory = 0.1 and8 = 0.001

5. CONCLUSIONS

We have provided a unified approach to the derivation of thescbf PNLMS algorithms, starting
from a standard LMS through to the PNLMS and its adaptive-sieg variants. This has been
achieved in a generic way, and has allowed us to introducectasses of adaptive step-size
algorithms within the same framework. The algorithm by Bamisteet al., although the most
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Figure 4. Performance comparison of the GASS algorithmis thi2 PNLMS fory = 1.95 andg = 0.001

mathematically rigorous, when combined with the empihicderived PNLMS, has been shown
to lack robustness. In comparison, the other “linear” adagearning rate PNLMS algorithms,
Ang and Farhang’s and Mathews and Xie's have exhibited ergthrobustness. The “nonlinear”
GNGD type adaptive-algorithm has proved to be significantly easier to tune assl $ensitive to

initial conditions and when used in an ill-conditioned eonment it always remains stable. This
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framework can be used as a unifying framework for the deawednd analysis of any of the class
of PNLMS algorithms.

A. DERIVATION OF ADAPTIVE STEP-SIZE ALGORITHM

Following the approach from2], we briefly sketch a rigorous derivation of adaptive stegs
PNLMS algorithms. In this approach, the terﬁ\ﬁ ~(k) is derived based on the PNLMS
update 83). The step-size update in gradient adaptive step-sizeitdges now becomes

n(k +1) = n(k) + Be(k)x(k)v (k) (48)
and~(k) is obtained from a matrix equatiog,{]

(k) :aw(k: -1) N on(k—1) G(k—1)e(k —)x(k—1)
on(k—1) " (k1) xT(k—1)G(k— Ux(k — 1)
0G(k—1) n(k—1e(k—1)x(k—1) de(k —1) n(k —1)G(k — 1)x(k —1)
onk-1) xT(k-1)Gk-1Dx(k—-1) onk-1) xT(k—1)G((k—-1)x(k—1)
N OxT(k—1)G((k — Dx(k—1)]7!
on(k —1)

nk—=1)G(k — ek — 1)x(k —1). (49)

Assuming that for smalh, n(k — 1) ~ n(k) . soety = Ser = (k) andy(k — 1) = G4

and substituting\ (k) with 232, we have

n(k —1e(k — 1)x(k—1)
xT(k—1)G(k—1)x(k—1)

G(k — De(k — 1)x(k — 1)

k- 1GHE - x -1 T ME-D

(k) =y(k—1)+

T n(k —1)G(k — x(k — 1)
o (k_m(k_l)xT(kq)G(kq) &—1)
xT(k — —)x(k —
[XT(](fk— SE(Z_SQ:_&Q n(k = 1)G(k = De(k ~ Dx(k = 1)

Gk — De(k — Dx(k —1)
] QAL ey ey y
(

T (k= 1)G(k — Dx(k — 1) k= De(k — 1)x(k —1)
+ {1 T X = )G(k— Dx(k = 1)] o DGHE = OxE =1 D
(k) = [0 =l = D]k 1) + g =P (50

In the algorithm §], the time varying term in the square brackets from the ali®veplaced by a
constantx < 1, thus, performing fixed parameter low pass filtering. Theaigm from [3], which
we have addressed above, is therefore a special caggarid [4] when the parametet is set to
a=0.

B. DERIVATION OF ADAPTIVE REGULARISATION ALGORITHM

In this case,aizi(ki) = ~(k) and the update of the regularisation factor now becomes

e(k+1) =e(k)+ Be(k)x(k)y(k) (51)

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Adapt. Control Sgnal Process. (2014)
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whereasy(k) is obtained from

Cow(k—1)  0G(k—1) e(k — 1)x(k — 1)
) == T ek =D A= DGk = Ix(— 1) T (= 1)
ek — 1) Gk — Dx(k —1)

9e(k—1) "xT(k—1)G(k — Dx(k — 1) +e(k — 1)
AxT (k — 1)G(k — )x(k — 1) +e(k — 1)] !
* de(k —1) '

v(k) =y(k = 1)+ Ak —1) - pp

UGk — De(k — 1)x(k — 1),

e(k — Dx(k —1)
(k—1)G(k—D)x(k—1)+e(k —1)
Gk —Dx(k—1)
Tk - DGk — Dx(k—1) +e(k — 1)
2T (k— DAk —Dx(k—1)+1
T Tk —1D)Gk—Dx(k— 1D +elk— 1)
xT(k—1)G(k — D)x(k — 1)
(k) = [1 TS = 1)G e — Uk — 1) 2k = 1)} (k=1)
G(k — De(k — )x(k —1)
THRT DG — Ux(k— 1) +e(k —1)2
xT(k—1)G((k - 1)x(k —1)
xT(k—1)G(k — )x(k—1) +e(k — 1)} '
e(k—1)x(k—1)
xT(k—1)G(k —Dx(k—1)+e(k—1)

— XT(k —y(k-=1)

UGk — De(k — 1)x(k — 1),

+[1—

» Ak —1). (52)

Allowing (k — 1) = S andA(k) = G20, for smalle gives
Gk — Vel — 1)x(k — 1)

YRy ==y (k= 1) = b T Gl = (k= 1) (b= D (53)

The equation derived ird{) is a simplified version of this strict update.
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