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SUMMARY

Despite being a de facto standard in sparse adaptive filtering, the two most important members of the
class of proportionate normalised least mean square (PNLMS) algorithms are introduced empirically. Our
aim is to provide a unifying framework for the derivation of PNLMS algorithms and their variants with
an adaptive step-size. These include algorithms with gradient adaptive learning rates and algorithms with
adaptive regularisation parameters. Convergence analysis is provided for the proportionate least mean square
(PLMS) algorithm in both the mean and mean square sense and bounds on its parameters are derived. An
alternative, more insightful approach to the convergence analysis is also presented and is shown to provide
an estimate of the optimal step-size of the PLMS. Incorporating the so obtained step-size into the PLMS
gives the standard PNLMS together with a unified framework for introducing other adaptive learning rates.
Simulations on benchmark sparse impulse responses supportthe approach. Copyrightc© 2014 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The least mean square (LMS) family of algorithms are a standard for the training of linear adaptive
filters [1]. The aim of the LMS algorithm is to minimise the cost function

J (k) =
1

2
e2(k) (1)

and is described by

e(k) = d(k)− xT (k)w(k),

w(k + 1) = w(k) + µe(k)x(k), (2)

wheree(k) is the output error at time instantk, d(k) the desired signal, andx(k) = [x(k), ..., x(k −
N + 1)]T andw(k) = [w1(k), ..., wN (k)]T are respectively the input signal and filter coefficient
vector for a filter of lengthN . Critical to the performance of the algorithm is the step-size parameter
µ which defines how fast the algorithm is converging towards the optimal solution. Where the
optimal solution is not reached the step-size parameter also affects the misalignment between the
algorithm solution and the optimal solution.
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2 B. JELFS & D. P. MANDIC

To facilitate operation in a nonstationary environment, that is, to allow the filter to adapt
independently of the signal power in the tap input, the normalised LMS (NLMS) uses an adaptive
step-size

η(k) =
µ

‖x(k)‖22 + ε
, (3)

where‖ · ‖2 is the Euclidean norm. For practical reasons, the regularisation parameterε is included
to prevent the weight update becoming unstable for input vectors comprising of near to zero
elements. This would otherwise be interpreted as effectively a large learning rateη(k) leading to
divergence.

Due to the importance and wide range of practical applications of the LMS based algorithms,
research into modifications of this class of algorithms has been a major topic in statistical and
adaptive signal processing communities [1]. The selection of learning rate is critical to the
performance of all LMS-type algorithms. Ideally, we desirean algorithm for which the speed of
convergence is fast and the steady state error is small when operating in a stationary environment.
In a nonstationary environment the algorithm is required totrack the signal and as such the learning
rate should change according to the dynamics of the input signal. A convenient way to improve
the convergence of linear adaptive filters in nonstationaryenvironments is to introduce a gradient
adaptive step-size (GASS). Approaches with a “linear” gradient adaptive learning rate based on
∂J /∂µ include the algorithms by Benvenisteet al. [2], Mathews and Xie [3], and Ang and
Farhang [4]. Alternatively a “nonlinear” gradient adaptive step-size based on∂J /∂ε, such as the
Generalised Normalised Gradient Descent (GNGD) algorithm[5], can be employed.

1.1. Proportionate NLMS

Both the LMS and NLMS algorithms perform in a suboptimal manner in sparse environments [6,7]
where the impulse response of an unknown system has a number of zero elements. As such,
the development of adaptive filters designed specifically for such environments has become an
increasingly large area of research, having particular application in echo and adaptive noise
cancellation [8,9].

For operation in sparse environments, the proportionate NLMS (PNLMS) [7] develops on the
NLMS algorithm to give an update which is proportional relative to the size of the filter coefficients.
This is achieved by introducing a diagonal “tap selection matrix” G(k) within the coefficient
update (2), giving the weight update [7]

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

‖x(k)‖22
, (4)

where

G(k) = diag[g1(k), . . . , gN(k)]. (5)

The diagonal elements ofG(k) define the proportionate amounts that each coefficient is updated by
and the elementsgn(k) are given by

φ̄(k) = 1/N

N
∑

n=1

φn(k),

φn(k) = max {ρmax [δ, ‖w(k)‖∞] , |wn(k)|} ,

gn(k) =
φn(k)

φ̄(k)
, n = 1, . . . , N (6)

where the symbol‖ · ‖∞ denotes the infinity norm.
A number of modifications of the PNLMS have been proposed [10,11], however, the stability of

the algorithm has received little attention. The existing approaches, such as Doroslovački and Deng’s
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 3

analysis [12], provide convergence proofs based on existing algorithms, such as steepest descent,
and are not explicitly derived for PNLMS. Little attention is given to the fact that as the PNLMS
is constrained to the stability limits of NLMS [7] and that it also inherits a problem frequently
encountered with NLMS, namely that for an ill-conditioned tap input autocorrelation matrix or for
processes exhibiting large dynamics, the filter becomes unstable [5].

The PNLMS algorithm in its original form has been introducedbased on empirical evidence and
subsequently most of its variants have also been designed ina similar manner. It would, however,
be beneficial for both education and practical purposes, if the derivation and analysis of the class of
PNLMS algorithms could be conducted based on a unified theoretical platform.

Our aim is therefore two-fold: firstly, following the results in [13], we provide a unified approach
to the derivation of the class of PNLMS algorithms; secondly, expanding on these results we
present adaptive step-size extensions of PNLMS algorithmsbased ondJ

dµ
= 0 [2–4] and also on the

adaptation of the regularisation parameterε [5]. Simulations on benchmark sparse systems support
the analysis.

2. DERIVATION OF THE CLASS OF PNLMS ALGORITHMS

Originally Duttweiler [7] introduced the PNLMS algorithm (4) as a version of NLMS, however, to
unify the analysis it is advantageous to start from the LMS. In the same vein as the Duttweiler result,
we shall modify the LMS to suit sparse environments, thus providing a basis to derive the class of
PNLMS algorithms in a generic way. The update of this “proportionate LMS” (PLMS) algorithm
thus becomes

w(k + 1) = w(k) + µG(k)e(k)x(k), (7)

that is, the PLMS is equips the standard LMS with the “tap selective” termG(k). The use of tap
selection also has a geometric justification, as for anN -tap LMS the weight update lives inRN and
the direction of the update is dominated by the largest element of the input vectorx(k) [14]. We
shall now provide a rigorous derivation of the standard PNLMS, based on the convergence analysis
of PLMS in (7); this approach is supported by the original analysis performed by Duttweiler [7]
which analyses a form of the PLMS algorithm with fixed gain distributorsG.

2.1. Convergence in the Mean

Assume without a loss in generality the desired response canbe expressed as [15]

d(k) = xT (k)wo + q(k), (8)

wherewo is the optimal weight vector andq(k) is zero mean Gaussian noise with varianceσ2
q ,

uncorrelated withx(k). This allows us to describe the PLMS by

e(k) =xT (k)wo + q(k)− xT (k)w(k),

w(k + 1) =w(k) + µG(k)x(k)xT (k)wo − µG(k)x(k)xT (k)w(k) + µq(k)G(k)x(k). (9)

Upon subtracting the optimal weight vectorwo from both sides, the weight error vectorv(k) =
w(k)−wo can be expressed as

v(k + 1) =v(k) − µG(k)x(k)xT (k)v(k) + µq(k)G(k)x(k). (10)

We can now apply the statistical expectation operator and employ the independence assumptions†

to yield

E[v(k + 1)] =
(

I− µG(k)E[x(k)xT (k)]
)

E[v(k)] + µG(k)E[q(k)x(k)],

†Namely that the input signal and filter coefficient vectors are zero mean, stationary, jointly normal and with finite
moments; the successive increments of tap weights are independent of one another and the error and input vector
sequences are statistically independent of one another [1].
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4 B. JELFS & D. P. MANDIC

=
(

I− µG(k)R
)

E[v(k)], (11)

whereI is the identity matrix andR = E[x(k)x(k)T ] is the autocorrelation matrix of the input
vector. Since the correlation matrixR is symmetric and positive semidefinite, it has the following
decomposition

R = QΛQT , (12)

where Λ = diag(λ1, λ2, . . . , λN ) are the eigenvalues andQ is the orthogonal matrix of the
corresponding eigenvectors. A rotation of the weight errorvectorv(k) by the eigenmatrixQ, that
is,v′(k) = QTv(k), gives

v′(k + 1) =
(

I− µG(k)Λ
)

v′(k). (13)

As (I− µG(k)Λ) is diagonal, every element ofv′(k) evolves independently and converges to zero
if and only if, for all the eigenvalues|1− µgnλn| < 1. Therefore, the PLMS converges only if it
converges for the maximum mode of convergence, that is, forλmax. Sinceλmax ≤

∑

(diagonal
elements ofR) = tr[R], the condition for the convergence in the mean of the PLMS becomes

0 < µ <
2

tr[G(k)R]
. (14)

Note that the termtr[G(k)R] is equivalent toxT (k)G(k)x(k), however, for simplicity, for a white
i.i.d. input for whichR = σ2

xI, and using the identitytr[AB] ≤ tr[A]tr[B] andtr[G(k)] = N , we
have

0 < µ <
2

Nσ2
x

. (15)

2.2. Convergence in the Mean Square

To converge in the mean square the algorithm must firstly converge in the mean, that is, (14) must
be satisfied. Based on the output error (9), we can arrive at the mean square error by squaring and
taking the expectation of both sides, to give

E[e2(k)] = σ2
q + E

[

(xT (k)v(k))2
]

− 2E
[

q(k)xT (k)v(k)
]

. (16)

Using the independence assumptions andxT (k)v(k) = vT (k)x(k) and defining the weight error
vector correlation matrix asK(k) = E[v(k)vT (k)], results in

E
[

(

xT (k)v(k)
)2
]

=tr
[

E
[

vT (k)x(k)xT (k)v(k)
] ]

=tr
[

E
[

vT (k)E
[

x(k)xT (k)
]

v(k)
] ]

=E
[

tr
[

vT (k)Rv(k)
] ]

=E
[

tr
[

v(k)vT (k)R
] ]

=tr
[

E
[

v(k)vT (k)
]

R
]

=tr [RK(k)] . (17)

Thus, the expected value of the squared error becomes

ξ(k) = E[e2(k)] =ξmin + ξEMSE(k)

=σ2
q + tr[RK(k)]

where the final term of (16) disappears due to the independence assumptions [1], ξmin is the
minimum mean square error defined by the power of the noise,σ2

q , andξEMSE(k) is the excess mean
square error. The excess mean square error is a result of the filter coefficients fluctuating around their
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optimum values as they begin to converge. Using again the rotation (12) andK′(k) = QTK(k)Q
gives

ξ(k) = σ2
q + tr[K′(k)Λ]. (18)

Since matrixΛ is diagonal, we have

ξ(k) = σ2
q +

N
∑

i=1

λiκ
′
ii(k), (19)

whereκ′
ii are the diagonal elements ofK′.

It is convenient to assess the mean square performance of an algorithm in terms of the
misadjustment

M =
ξEMSE

ξmin

=
ξEMSE

σ2
q

, (20)

which following the approach from [16,17] can be shown to be

M =

∑N

i=1
µgiλi

2(1−µgi(k)λi)

1−
∑N

i=1
µgi(k)λi

2(1−µgi(k)λi)

(21)

=µ
1
2 tr[G(k)R]

1− 1
2µtr[G(k)R]

. (22)

Thus, for a white i.i.d. input, the mean square errorξ(k) converges asymptotically toξ(∞) =
Jmin = σ2

q for

0 < µ <
2

tr[G(k)R]
=

2

σ2
xN

. (23)

which gives the bound on the step-size of PLMS.

2.3. Introducing PNLMS via Normalisation of PLMS

We have shown that for convergence of PLMS in both the mean andthe mean square, the bound on
the step-size is given by

0 < µ <
2

xT (k)G(k)x(k)
. (24)

Incorporating this step-size into the PLMS (7) gives the normalised PLMS (PNLMS)

w(k + 1) = w(k) +
µ

xT (k)G(k)x(k)
G(k)e(k)x(k), (25)

where0 < µ < 2.
As the expansion ofK′(k) to obtain (21) is not straightforward, an alternative method is to recast

the PNLMS into the optimisation task performed by NLMS type algorithms, that is, to minimise
the a posteriori error̃e(k) = d(k)− xT (k)w(k + 1), as opposed to LMS which minimises the a
priori errore(k). We aim to arrive at the PNLMS by estimating the range of values ofµ for which
|ẽ(k)| < |e(k)|. This is achieved (following the approach from [18]) by performing a first order
Taylor series expansion (TSE) of|ẽ(k)|2 around|e(k)|2, that is

|ẽ(k)|2 =|e(k)|2 +

N
∑

i=1

∂|e(k)|2

∂wi(k)
∆wi(k) (26)
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6 B. JELFS & D. P. MANDIC

The partial derivative in (26) can be obtained from (2) as

∂|e(k)|2

∂wi(k)
= −2e(k)x(k − i+ 1) = −2e(k)xi(k), i = 1, 2, . . . , N (27)

while the update∆wi(k) in (7), is given by

∆wi(k) = µe(k)gi(k)xi(k). i = 1, 2, . . . , N (28)

A substitution of (27)–(28) into (26) yields

|ẽ(k)|2 =|e(k)|2 − 2µ

[

e(k)

N
∑

i=1

xi(k)

][

e(k)

N
∑

i=1

gi(k)xi(k)

]

=|e(k)|2 − 2µ|e(k)|2xT (k)G(k)x(k)

=|e(k)|2
[

1− 2µxT (k)G(k)x(k)
]

. (29)

For the output error to vanish towards zero ask → ∞ we require

|ẽ(k)|2 ≤ |e(k)|2
[

1− 2µxT (k)G(k)x(k)
]

. (30)

As the squared error terms are non-negative this will occur if and only if
∣

∣1− 2µxT (k)G(k)x(k)
∣

∣ < 1, (31)

resulting in the following bounds on the range of the step-size

0 < µ ≤
1

xT (k)G(k)x(k))
. (32)

These bounds are optimal, providing the first order TSE givesa good approximation of the a
posteriori error̃e(k). From (32), to minimise the a posteriori error̃e(k) and equip the proportionate
LMS with an optimal learning rate we have

w(k + 1) = w(k) + µ
G(k)e(k)x(k)

xT (k)G(k)x(k)
, (33)

The original PNLMS was introduced empirically and uses the standard NLMS update to obtain its
optimal step-size. Notice that the update presented here has precisely the form of what has become
the standard version of PNLMS [11].

2.3.1. Comparison of Different Formulations of PNLMS The above formulation of the PNLMS,
whilst having an update ofw(k) in line with that of the standard version of the PNLMS, does differ
in one point. In the original version of the PNLMS the update of the proportionate termG(k) is
given by (6) and has the form

φ̄(k) = 1/N

N
∑

n=1

φn(k), (34)

resulting intr[G(k)] = N . However, in the more commonly used version of the PNLMS the termφ̄
assumes the form

φ̄(k) =

N
∑

n=1

φn(k), (35)

which results intr[G(k)] = 1. In this case the bound on the step-size (23) becomes

0 < µ <
2

tr[R]
=

2

xT (k)x(k)
, (36)
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 7

and results in an update ofw(k) in the form of the original PNLMS (4). As such, the version of the
update ofw(k) depends on the update ofG(k) used; the version of the PNLMS presented here is
therefore an optimal version and not a perfect replica of either the original Duttweiler version or the
more standard version.

Regarding the discrepancies between the PNLMS formulations, it has been shown in [19] that
when including a regularisation parameter in the standard version of the PNLMS, as with the
NLMS, the PNLMS version is a scaled version of the NLMS regularisation by a factor ofN . One
advantage of using this formulation of the PNLMS is that it allows for the regularisation irrespective
of the proportionality component of the algorithm. In this way, the regularisation of both the NLMS
and PNLMS are functions of the filter length,N , the signal variance,σ2

x, and the signal to noise
ratio (SNR), making the choice of regularisation critical in low SNR conditions. This form of
regularisation has been shown to provide stability in stationary environments for which adaptive
versions which also allow operation in nonstationary environments will be presented in Section3.2.

3. UNIFYING APPROACH TO GASS ALGORITHMS FOR PNLMS

Now that we have obtined the PNLMS as a result of an optimisation procedure, it is natural to equip
this approach with fast and robust learning, by consideringadaptive learning rates. The optimal
learning rate obtained from the TSE of the a posteriori errorẽ(k) in (29) uses only the first term of
the expansion, that is, the partial derivatives with respect towi, i = 1, . . . , N , and thus the TSE (26)
can be expanded to include the higher order terms (h.o.t.) as

|ẽ(k)|2 = |e(k)|2 − 2µ|e(k)|2xT (k)G(k)x(k) + h.o.t.(k). (37)

Algorithms which take into account higher order statisticscan provide better modelling of the signal
distribution for non-Gaussian inputs [20]. To account for the exclusion of the neglected higher order
terms of TSE (26), we next provide an insight into the extent to which the higher order terms
influence the algorithm.

The class of gradient adaptive step-size (GASS) algorithmsinclude the algorithm proposed in [3]
which is based upon a gradient adaptation of the learning rate of the LMS from (2), or in the form
∂J (k)
∂µ

[3], whereJ (k) is the cost function (1). This algorithm is essentially a simplified version
of the Benvenisteet al. algorithm [2], where time varying filtered versions of the instantaneous
gradients of the cost function with respect to the learning rate are replaced by their instantaneous
values. In the algorithm of Ang and Farhang [4], this time variant filtering of the instantaneous
gradients is replaced by a low pass filter with a fixed coefficient. To arrive at this class of algorithms
for PNLMS, we shall express the higher order terms from (37) as

h.o.t.(k) = θ(k)e(k). (38)

On the other hand, the GNGD class of algorithms [5], make the parameterε in the step-size of the
NLMS in (3) gradient adaptive based on∂J (k)

∂ε(k−1) , which for the PNLMS results in the higher order
terms in the form

h.o.t.(k) = −µe(k)ε(k). (39)

By setting (37) to zero and solving forµ, we can now express the optimal step-sizes for the Mathews
and Xie type GASS algorithm [3] for PNLMS as

µopt =
η(k)

xT (k)G(k)x(k)
(40)

and the GNGD type step-size update for the PNLMS as

µopt =
1

xT (k)G(k)x(k) + ε(k)
. (41)
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8 B. JELFS & D. P. MANDIC

Notice from (40) and (41) that there is a fundamental difference between the variable step-size
algorithms with a “linear” multiplicative adaptive factor(GASS framework) and GNGD, which
employs a “nonlinear” update of the adaptive learning rate.The exact derivation of the update in
either case depends crucially on the weight sensitivities with respect to the adaptive term within the
step-size.

3.1. Linear Update of the Adaptive Step-Size

In this case, the termh.o.t.(k) is written asθ(k)e(k), so that a gradient adaptive step-size algorithm
similar to that of the Mathews and Xie algorithm for the LMS becomes

w(k + 1) = w(k) +
η(k)

xT (k)G(k)x(k)
G(k)e(k)x(k),

η(k + 1) = η(k)− β
∂J (k)

∂η(k − 1)
,

∂J (k)

∂η(k − 1)
=

∂J (k)

∂e(k)

∂e(k)

∂w(k)

∂w(k)

∂η(k − 1)
,

η(k + 1) = η(k)+β
e(k)e(k − 1)xT (k)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
, (42)

whereβ is a small positive constant. In practice, learning rates need to be smaller than the optimal
ones‡ and the termη(k) from above is often replaced by a small constantµ which multiplies an
adaptive parameter, for instanceη(k) = µϑ(k).

The result in (42) is an approximation of the rigorous analysis provided by Benvenisteet al. [2]
where,

η(k + 1) = η(k) + βe(k)xT (k)γ(k) (43)

and

γ(k) = [1− η(k − 1)] γ(k − 1) +
G(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
, (44)

or that of Ang and Farhang [4]

γ(k) = αγ(k − 1) +
G(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
, (45)

whereα is a constant such thatα < 1. For further detail see AppendixA.

3.2. Nonlinear Update of the Adaptive Step-Size

In the second case, the termh.o.t. from (37) is written ash.o.t. = −µe(k)ε(k), which allows us to
arrive at the GNGD type PNLMS algorithm, where the variationof the time varyingµopt is governed
in a nonlinear manner. The weight update of this algorithm isderived starting from

w(k + 1) = w(k) +
µ

x(k)TG(k)x(k) + ε(k)
G(k)e(k)x(k). (46)

‡The optimal learning rates are usually derived for white inputs and based on the independence assumptions.
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A UNIFYING FRAMEWORK FOR THE ANALYSIS OF PNLMS ALGORITHMS 9

The parameterε in (46) is then made gradient adaptive as

ε(k + 1) =ε(k)− β∇ε(k−1)J (k),

∂J (k)

∂ε(k − 1)
=
∂J (k)

∂e(k)

∂e(k)

∂w(k)

∂w(k)

∂ε(k − 1)
,

=µ
e(k)e(k − 1)xTG(k)x(k − 1)

[xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)]
2 ,

ε(k + 1) =ε(k)− βµ
e(k)e(k − 1)xT (k)G(k − 1)x(k − 1)

[xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)]
2 , (47)

whereβ is a small positive constant. The adaptation of the time–varying term in the denominator
of the above gradient adaptive learning rate compensates for the deficiencies in the derivation of
the step-size of the NLMS [18] and hence the PNLMS. The complete derivation can be found in
AppendixB.

4. SIMULATIONS

To illustrate the performance of the algorithms derived within the proposed GASS framework,
we ran simulations in a system identification setting and fora range of the algorithm parameters.
Learning curves were produced using the normalised misalignment in dB, given by10 log10 ‖wopt −
w‖22/‖wopt‖

2
2, averaged over 100 independent trials, wherewopt = [w1 opt, ..., wN opt]

T is the
optimal filter coefficient vector. For all the algorithms, the parametersρ and δ were set to the
recommended values ofρ = 5/N and δ = 0.01 [7]. The regularisation parameterε was set to
ε = 0.01 while for the adaptive-ε algorithm ε(0) = 0.01, whereas for the Ang & Farhang type
algorithm the learning rateα = 0.9. The sparse system under consideration was the benchmark
system analysed in [6], a 100-tap channel with four nonzero taps located in positions[1, 30, 35, 85].
For each trial, the input given to the channel was white Gaussian and the noise signal was an
independent white Gaussian noise with the SNR set to 20dB; the initial estimates of the filter
coefficientsw(0) were selected randomly in order to provide a range of different learning curves.

The performance of the standard PNLMS compared with that of the proposed algorithms for a
step-size ofµ andη(0) = 0.1 is shown in Fig.1. For all the linear learning rate updates the step-
size wasβ = 0.01. In this case, the Benveniste and Farhang PNLMS type algorithms offered faster
rates of convergence, but the PNLMS and adaptiveε algorithms had a smaller steady state error,
with the Mathews algorithm in between them. Figure2 shows convergence curves for the same
parameter settings, except that for the linear learning rates the parameterβ was set toβ = 0.001. A
comparison of the performances of algorithms with “linear”learning rates in Fig.2, with those in
Fig.1 highlights the sensitivity issues associated with the linear learning rates and also the selection
of their parameters.

To illustrate the behaviour of the algorithms in typical critical operating conditions (simulating the
effect of close to zero inputs§), the value ofµ andη(0) was increased to1.95, at which point PNLMS
is on the limit of stability. As shown in Fig.3, with the value ofβ = 0.01 the Benveniste algorithm
did not converge, and the Farhang algorithm offered a smaller steady state error than the Mathews
algorithm. Observe that when the algorithms were operatingin critical conditions, the performance
of the algorithm with an adaptive regularisation factor wasstill much improved compared to the
PNLMS. Figure4 illustrates that by reducing the value ofβ to β = 0.001 causes the Benveniste
algorithm to converge, however, the performance was in linewith that of the adaptiveε algorithm.

§Notice from (40)–(41) that asx(k)G(k)x(k) → 0 then effectivelyµ(k) → ∞. By makingµ andη(0) large we achieve
the same effect, allowing a convenient comparison of the fixed, linear, and variable-ε methods.
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Figure 1. Performance comparison of the GASS PNLMS algorithms with the standard PNLMS forµ = 0.1
andβ = 0.01
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Figure 2. Performance comparison of the GASS algorithms with the PNLMS forµ = 0.1 andβ = 0.001

5. CONCLUSIONS

We have provided a unified approach to the derivation of the class of PNLMS algorithms, starting
from a standard LMS through to the PNLMS and its adaptive step-size variants. This has been
achieved in a generic way, and has allowed us to introduce twoclasses of adaptive step-size
algorithms within the same framework. The algorithm by Benvenisteet al., although the most
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Figure 3. Performance comparison of the GASS algorithms with the PNLMS forµ = 1.95 andβ = 0.01
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Figure 4. Performance comparison of the GASS algorithms with the PNLMS forµ = 1.95 andβ = 0.001

mathematically rigorous, when combined with the empirically derived PNLMS, has been shown
to lack robustness. In comparison, the other “linear” adaptive learning rate PNLMS algorithms,
Ang and Farhang’s and Mathews and Xie’s have exhibited enhanced robustness. The “nonlinear”
GNGD type adaptive-ε algorithm has proved to be significantly easier to tune and less sensitive to
initial conditions and when used in an ill-conditioned environment it always remains stable. This
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framework can be used as a unifying framework for the derivation and analysis of any of the class
of PNLMS algorithms.

A. DERIVATION OF ADAPTIVE STEP-SIZE ALGORITHM

Following the approach from [2], we briefly sketch a rigorous derivation of adaptive step-size
PNLMS algorithms. In this approach, the term∂w(k)

∂η(k−1) = γ(k) is derived based on the PNLMS
update (33). The step-size update in gradient adaptive step-size algorithms now becomes

η(k + 1) = η(k) + βe(k)x(k)γ(k) (48)

andγ(k) is obtained from a matrix equation [2,4]

γ(k) =
∂w(k − 1)

∂η(k − 1)
+

∂η(k − 1)

∂η(k − 1)
·

G(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

+
∂G(k − 1)

∂η(k − 1)
·

η(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
+

∂e(k − 1)

∂η(k − 1)
·
η(k − 1)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

+
∂[xT (k − 1)G(k − 1)x(k − 1)]−1

∂η(k − 1)
· η(k − 1)G(k − 1)e(k − 1)x(k − 1). (49)

Assuming that for smallη, η(k − 1) ≈ η(k) ∴ ∂w(k)
∂η(k−1) = ∂w(k)

∂η(k) = γ(k) andγ(k − 1) = ∂w(k−1)
∂η(k−1)

and substitutingλ(k) with ∂G(k)
∂η(k) , we have

γ(k) =γ(k − 1) +
G(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
+ λ(k − 1)

η(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

− xT (k − 1)γ(k − 1)
η(k − 1)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

−
xT (k − 1)λ(k − 1)x(k − 1)

[xT (k − 1)G(k − 1)x(k − 1)]2
· η(k − 1)G(k − 1)e(k − 1)x(k − 1),

γ(k) =

[

1− η(k − 1)
xT (k − 1)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

]

· γ(k − 1) +
G(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

+

[

1−
xT (k − 1)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)

]

·
η(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
λ(k − 1),

γ(k) = [1− η(k − 1)] γ(k − 1) +
G(k − 1)e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1)
. (50)

In the algorithm [4], the time varying term in the square brackets from the aboveis replaced by a
constantα < 1, thus, performing fixed parameter low pass filtering. The algorithm from [3], which
we have addressed above, is therefore a special case of [2] and [4] when the parameterα is set to
α = 0.

B. DERIVATION OF ADAPTIVE REGULARISATION ALGORITHM

In this case, ∂w(k)
∂ε(k−1) = γ(k) and the update of the regularisation factor now becomes

ε(k + 1) = ε(k) + βe(k)x(k)γ(k) (51)
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whereasγ(k) is obtained from

γi(k) =
∂w(k − 1)

∂ε(k − 1)
+

∂G(k − 1)

∂ε(k − 1)
· µ

e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)

+
∂e(k − 1)

∂ε(k − 1)
· µ

G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)

+
∂[xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)]−1

∂ε(k − 1)
· µG(k − 1)e(k − 1)x(k − 1),

γ(k) =γ(k − 1) + λ(k − 1) · µ
e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)

− xT (k − 1)γ(k − 1) · µ
G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)

−
xT (k − 1)λ(k − 1)x(k − 1) + 1

[xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)]2
· µG(k − 1)e(k − 1)x(k − 1),

γ(k) =

[

1− µ
xT (k − 1)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)

]

· γ(k − 1)

− µ
G(k − 1)e(k − 1)x(k − 1)

[xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)]2

+

[

1−
xT (k − 1)G(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)

]

·

· µ
e(k − 1)x(k − 1)

xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)
λ(k − 1). (52)

Allowing γ(k − 1) = ∂w(k−1)
∂ε(k−1) andλ(k) = ∂G(k)

∂ε(k) , for smallε gives

γ(k) = [1− µ] γ(k − 1)− µ
G(k − 1)e(k − 1)x(k − 1)

[xT (k − 1)G(k − 1)x(k − 1) + ε(k − 1)]2
. (53)

The equation derived in (47) is a simplified version of this strict update.
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