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Abstract— Time-varying synergies from kinematic data can
be used to discern fundamental patterns of movement. We
show through simultaneous extraction of synergies from both
novice and experienced pianists that movement common to both
groups can be identified. The extracted synergies successfully
allow for the majority of the variability of the data to be ac-
counted for by a limited number of components. Furthermore,
classification of the weightings representing the recruitment of
each of the synergies accurately distinguishes between the piano
playing of the two groups of subjects. However, the major
differences between the two groups lie not in the synergies
representing the majority of the variance of the data but in the
recruitment of smaller synergies.

I. INTRODUCTION

The dexterity and coordination exhibited by the human

hand gives it the capability to produce a wide array of

precise detailed movements. As such, the hand is a highly

complicated and also redundant system [1]. With such large

numbers of degrees of freedom, how the central nervous

system implements a control strategy for this system is

of interest in numerous different fields, from robotics to

rehabilitation. The concept of synergies, that is, common

patterns of movement across multiple joints which can be

reused and serve as building blocks to produce detailed

movements [2], has been gaining traction in recent years.

Synergies provide an approach which reduces the number of

degrees of freedom to be controlled individually, with studies

indicating that only a few components are required to be able

to represent finger movement [3].

Understanding detailed coordinated movement requires

knowledge of how the fingers move - not only within

themselves (individual joints) but also in relation to each

other (simultaneous movement) and independently of each

other (sequential movement). Physiological constraints mean

that complete independence of fingers is not possible, with

the thumb and index finger having greater independence

than the other fingers. A high degree of correlation between

fingers has been observed with spillover movement between

fingers being noted to increase with the frequency of the

finger movement, with the greatest amounts seen in the
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middle and ring fingers [4]. At the same time coarticulation

of the movement of fingers means the sequence in which

fingers move has an effect on the overall movement; with the

movement of one finger impacting on how both the preceding

and subsequent fingers move. For example in sign language,

when spelling out words it has been shown that the sequence

of letters in the word had an effect on the hand shape of the

current letter [5].

As a skill which requires control and precision of both

simultaneous and sequential finger movement, piano playing

requires both coordination and dexterity. Previous investiga-

tion of the covariation of joint kinematics for experienced

pianists during piano playing showed time-varying synergies

with distinct patterns of movement [6]. Unlike other studies,

the pianists displayed limited spillover between the fingers,

however, as the study considered only experienced players

this may be an implication of practice and exercise. With

physiological constraints leading to the optimization of piano

playing having a set of feasible solutions, which can limit

what can be achieved through practice [7], of interest is how

improvements caused by such exercise manifest.

In this paper we investigate the differences in synergistic

movement between a group of novice and experienced pi-

anists for sequential single finger piano playing. We extract

synergies from all subjects simultaneously to identify the

patterns of movement common to both groups rather than

individual subjects. Classification of the weightings of these

common patterns reveals how the recruitment of these pat-

terns differs between the novice and experienced groups of

pianists.

II. EXPERIMENTAL PROCEDURE

A. Subjects

10 right-handed subjects (3 female, 7 male, 22.1 ± 2.3
years old) participated in the experiment. Participants gave

informed consent to the experimental procedure, which was

approved by the ethics committee at City University of Hong

Kong. Of the 10 subjects 5 were novices with little or no

piano playing experience. The other 5 were all experienced

players having at least passed a grade seven exam1 (1×G7,

3×G8, 1×Diploma/Concert level) with an average of 12 ±
6.20 years experience.

B. Music

The selected piece of music was Exercise No. 11 from

Practical Exercises for Beginners Op. 599, Carl Czerny.

1Grade range 1-8, Associated Board of the Royal Schools of Music &
Australian Music Exam Board



Czerny’s Op. 599 is a well known set of exercises used

to improve the fingering technique of novice pianists. The

exercise selected was a static hand, five finger exercise which

contained no repetitions of the same key press. Subjects were

provided with the score of the music and first allowed to

familiarize themselves with the piece. To aid the novices

they were told where on the keyboard to position their hand

and the score was annotated with the number of the finger

which was to play the note, 1 to 5 for thumb to little finger

respectively. For the recordings, subjects were asked to play

at their own pace and complete two separate repeats of the

music with a break in between.

C. Data Collection

The subjects’ hand kinematic data was recorded with a

5DT Data Glove 14 Ultra (5th Dimension Technologies,

Pretoria, South Africa), with 12 bit resolution recording

at 64Hz. The glove contains 14 flex sensors, 1 sensor

for each of the metacarpophalangeal (MCP) joints, 1 for

each proximal interphalangeal (PIP) joint (interphalangeal

(IP) joint in thumb) and the remaining 4 sensors measure

the abduction between each of the fingers. The music was

recorded to MIDI files using a Yamaha PSR-E333 61-key

touch response keyboard. The MIDI data stores the note

played, onset and offset of the key press and the velocity

(loudness) of the key press. Simultaneous video recordings

of the subjects hands were also taken for reference.

III. DATA ANALYSIS

A. Preprocessing

For the purposes of the analysis, the kinematic data was

segmented into sequences of 3 consecutive notes using the

key press timings from the MIDI files. The middle note of

each sequence was considered the key press of interest with

each sequence spanning from the start of the key press prior

to it to the release of the one following. From the music score

21 distinct sequences were identified, each repeated between

1 and 7 times, these sequences were grouped according to

the finger used to play the middle note of interest. After

incorrect key sequences were removed and the data from

both recordings for all 10 subjects combined, the total key

sequences for each finger were N = [253, 212, 409, 115, 175]
from thumb to little finger respectively.

To allow the comparison of different key sequences the

time length of each key sequence was normalized. As the

coordination of the movement was the factor of interest the

overall length of the key sequence rather than the inter-key

interval was standardized. This was done in order to preserve

the dynamics of the transitions between the key press of

interest and the notes preceding and subsequent to it. For

each key sequence the rate of flexion, calculated from the

data glove sensor data as a rate of change of flexion per

second, were interpolated to give a normalized time vector

with a standardized number of samples K = 186.

B. Synergy Extraction via Principal Component Analysis

Previous studies have shown similarities when comparing

the synergies extracted from different subjects performing the

same task [8]. Therefore, by extension, the aim of our study

was to find generalized fundamental patterns in sequential

finger movement by extracting synergies from all the subjects

simultaneously. By grouping the key sequences according

to the finger playing the middle note of each trio, the

intention was to identify movements specific to each finger

independent of the fingers moved prior to and subsequent

to the current finger. To achieve the simultaneous extraction,

principle component analysis (PCA) was applied to each of

the 5 groups (one for each finger) of key sequences. Fol-

lowing the approach from [3] the elements of the covariance

matrix of each data set are given by

Cij =

K
∑

k=0

L
∑

l=1

(

θ̇i(l, k)−
¯̇
θ(l)

)

·

(

θ̇j(l, k)−
¯̇
θ(l)

)

, (1)

where θ̇i(l, k) is the rate of flexion for trial i, joint l at sample

k and
¯̇
θ(l) is the average rate of flexion of joint l across all

trials. The principle components (PCs) are then constructed

from the covariance matrix such that each trial can then be

precisely reconstructed as a weighted version of the PCs plus

the mean rate of flexion

θ̇i(k) =
¯̇
θ +

N
∑

n=1

wi(n)PCn(k). (2)

The weighting of each component wi(n) is a constant term

for each time-varying synergy and indicate the proportion

each component contributes to the overall trial signal.

C. Classification

Having extracted synergies for each finger from the data

of all the subjects and trials together, the next step was to

identify any differences in their recruitment between novice

and experienced pianists. An expectation-maximization (EM)

algorithm [9] was used to fit a 2 component Gaussian mixture

model (GMM) to classify the weightings of the synergies.

Selection of the subset of synergies which achieved the

greatest degree of separability was achieved via a forward

selection strategy. That is, the synergy whose weightings

achieved the greatest separation between the two groups was

selected first and at each subsequent iteration all remaining

weightings were tested in conjunction with the already se-

lected weightings until the maximum possible classification

accuracy was achieved.

IV. RESULTS

The results of the synergy extraction indicated the variance

accounted for (VAF) by the first ten extracted components,

shown in Fig. 1, account for the majority of the variance

across all the fingers. The first 4 components account for

greater than 60% of the variance, which is inline with results

from previous piano playing studies, where the synergies

were extracted for each subject individually [6]. Having

successfully extracted synergies which could represent the
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Fig. 1. The variance accounted for by the first 10 components extracted
from the key sequences centered around each finger.

TABLE I

CLASSIFICATION ACCURACY FOR KEY SEQUENCES CENTERED

AROUND EACH OF THE FINGERS, THE NUMBER OF COMPONENTS

REQUIRED TO ACHIEVE THE ACCURACY, THE RANGE OF AND

VARIANCE ACCOUNTED FOR BY THE SELECTED COMPONENTS.

Accuracy Number of
Component Range

VAF

(%) Components Largest Smallest Total (N ) (%)

Thumb 93.68 15 17 253 253 1.38

Index 94.81 14 55 211 212 0.11

Middle 93.40 17 8 408 409 2.70

Ring 96.52 18 9 111 115 5.97

Little 98.29 17 19 175 175 0.96

movement data of both the novice and experienced pianists,

the weightings of each component for each trial were used

to classify the key sequence trials according to whether they

were played by either a novice or experienced pianist. Table I

lists the maximum classification accuracy achieved for each

finger and the number of components required to achieve it.

While the weightings of only a small number of compo-

nents were required to distinguish between the movement of

the novice and experienced pianists, of particular interest is

the fact that the components selected were not those which

accounted for the majority of the variance. The range of

components selected for classification are given in Table I,

the component numbers range from 1 being the component

which accounted for the most variance to N which accounted

for the least. It should be noted the largest selected com-

ponents were not necessarily selected first in the forward

selection strategy and conversely for the smallest. The VAF

of the selected components was less than 6% for all fingers

yet achieved greater than 90% classification in all cases.

To investigate how the selected components related to

the movement, the signals for each trial were reconstructed

according to (2) using only the selected components. Fig. 2

shows the average reconstructed signals for novice and expe-

rienced pianists from the key sequence trials with the middle

finger as the centre key press. The reconstructed signals for

each joint, based on the synergies used for classification,

show the largest range of motion in the abduction between

the index and middle fingers (Fig. 2 bottom row 2nd from

left). This trend was observed in all 4 of the long finger

reconstructions indicating abduction was significant to the

TABLE II

AVERAGES OF THE INTRA-TRIAL VARIANCE FOR EACH JOINT

AND EACH SET OF KEY SEQUENCES CENTERED AROUND ONE OF

THE 4 LONG FINGERS FOR NOVICE AND EXPERIENCED PIANISTS.

Index Middle Ring Little

×10
−3 Nov. Exp. Nov. Exp. Nov. Exp. Nov. Exp.

Thumb
MCP 0.07 0.06 0.05 0.09 0.08 0.14 0.07 0.09

PIP 0.13 0.12 0.09 0.15 0.14 0.24 0.11 0.16

Thumb/Index 0.30 0.31 0.19 0.39 0.38 0.84 0.32 0.55

Index
MCP 3.79 3.69 1.41 2.93 6.73 16.5 3.25 3.91

PIP 4.33 4.02 1.09 2.83 7.14 11.2 2.60 4.24

Index/Middle 14.0 10.8 5.16 11.4 20.8 32.3 16.5 26.5

Middle
MCP 1.77 1.27 1.28 2.25 2.91 3.97 2.90 3.55

PIP 6.28 5.68 4.01 7.93 11.4 23.3 8.83 14.9

Middle/Ring 11.3 11.8 2.62 7.98 29.8 50.2 9.61 10.4

Ring
MCP 0.50 0.44 0.12 0.34 1.32 1.59 0.77 1.20

PIP 7.00 4.11 0.58 1.94 20.2 21.4 4.16 7.14

Ring/Little 4.07 4.51 1.55 5.30 13.4 23.7 13.2 16.9

Little
MCP 1.05 1.03 0.34 0.90 3.56 4.88 3.23 2.33

PIP 0.17 0.20 0.09 0.26 0.43 0.94 0.44 0.65

* Bold values indicate the joint with maximum average variance
for each finger

classification.

To further understand how the different joints contributed

to the reconstructed signals the variance of each joint for

each trial was calculated. Table II lists the average intra-trial

variability of the key sequences centered around each of the

4 long fingers for novices and experienced piano players.

The average variance of each joint shows that for all 4

fingers the maximum variance occurs in one of the abduction

measurements. In particular the abduction between the index

and middle fingers was largest in 5 of the 8 groups and in

all but one case (novice middle finger movement) the top

two average inter-trial variances for each finger’s set of key

sequences occurred in the abduction. Following abduction,

the next largest movements were PIP joints. In contrast the

MCP joints did not appear in the top 5 variances for any of

the fingers, indicating a generally greater degree of similarity

between the two groups in the MCP joints.

V. DISCUSSION

Our results show that in line with previous studies the

synergies extracted for piano playing movement can account

for the majority of the variance in the movement using only

relatively few components [6]. Since the synergies extracted

from different subjects for the same movement have been

shown to have a high degree of similarity [2]; rather than

compare the profiles of the synergies extracted from different

subjects, our approach extracted synergies from the data

of all the subjects simultaneously. Combining the data and

extracting the synergies simultaneously allows us to identify

the fundamental components of the movement which exist

across subjects. To reduce effects observed due to the order
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Fig. 2. Reconstructed signals for key sequence trials centered around the middle finger. Each plot shows the average rate of flexion for novice and
experienced pianists for one joint. Top row: PIP joints thumb to little finger from left to right. Middle row: MCP joints. Bottom row: abduction between
Thumb/Index, Index/Middle, Middle/Ring, Ring/Little.

of the sequence of finger movement [5], key sequences with

the same finger playing the note at the centre of the trial

were combined into one data set for analysis.

This approach allowed direct comparison of the recruit-

ment weightings of the synergies from different subjects

and for different movements. We demonstrated that accurate

distinction between novice and experienced pianists based on

the weightings of their shared synergies could be achieved.

Further, the results indicated the groups were most distin-

guishable in their recruitment of the smaller components,

whereas the weightings of the synergies which accounted for

the majority of the variance displayed similar recruitment

across the subject groups. For sequential finger movement

with a static hand position, as investigated in this study,

the most significant differences between the novice and

experienced subjects occurred in the abduction between the

long fingers. Although the thumb showed a less distinct

pattern in the joints when reconstructing the data from the

synergies used to classify the key sequences.

From the results obtained in this study the differences

in the experience levels of the subjects appear to be most

noticeable in the relationships between the fingers and their

neighbours, rather than the flexion of the finger in question.

We can hypothesize that the training of the experienced

pianists may lead to a greater degree of independence and

more efficient coarticulation between the fingers, resulting

in the observed differences in the abduction between the

fingers of the novice and experienced pianists. However,

physiological constraints of individual hands may differ,

impacting the degree to which independence of fingers can

be trained and hence, constraining the optimization of the

movement [7]. As such, understanding how training affects

performance requires greater study of the learning process. It

is also worth considering whether these observations remain

consistent when extended into coordinated movements which

involve sequences with simultaneous finger movement, such

as sign language or when playing more complicated pieces

of music. Finally, if we want to produce systems that can

represent detailed coordinated movement using synergistic

approaches, the results presented here suggest we need to

consider whether extracting synergies which account for the

majority of the variance is a sufficient requirement.

REFERENCES

[1] P. W. Brand and A. M. Hollister, Clinical Mechanics of the Hand,
3rd ed. St. Louis, MO, USA: Mosby, 1999.

[2] R. Vinjamuri, M. Sun, C.-C. Chang, H.-N. Lee, R. Sclabassi, and Z.-
H. Mao, “Dimensionality reduction in control and coordination of the
human hand,” IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 284–295,
2010.

[3] M. Santello, M. Flanders, and J. F. Soechting, “Patterns of hand motion
during grasping and the influence of sensory guidance,” J. Neurosci.,
vol. 22, no. 4, pp. 1426–1435, 2002.
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