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Zebrafish larvae display a rapid and characteristic swimming behaviour after abrupt light onset or offset.
This light-induced locomotor response (LLR) has been widely used for behavioural research and drug
screening. However, the locomotor responses have long been shown to be different between different
wild-type (WT) strains. Thus, it is critical to define the differences in the WT LLR to facilitate accurate
interpretation of behavioural data. In this investigation, we used support vector machine (SVM) models
to classify LLR data collected from three WT strains: AB, TL and TLAB (a hybrid of AB and TL), during early
embryogenesis, from 3 to 9 days post-fertilisation (dpf). We analysed both the complete dataset and a
subset of the data during the first 30 s after light change. This initial period of activity is substantially
driven by vision, and is also known as the visual motor response (VMR). The analyses have resulted in
three major conclusions: First, the LLR is different between the three WT strains, and at different
developmental stages. Second, the distinguishable information in the VMR is comparable to, if not better
than, the full dataset for classification purposes. Third, the distinguishable information of WT strains in
the light-onset response differs from that in the light-offset response. While the classification accuracies
were higher for the light-offset than light-onset response when using the complete LLR dataset, a reverse
trend was observed when using a shorter VMR dataset. Together, our results indicate that one should use
caution when extrapolating interpretations of LLR/VMR obtained from one WT strain to another.

& 2015 Published by Elsevier Ltd.
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1. Introduction

Over the last two decades, the zebrafish has been increasingly
used to study human diseases due to its genetic similarities with
humans [1,2]. In recent years, the zebrafish has also been used in
high-throughput behavioural studies in various fields, including
but not limited to, neurobiology [3–8], pharmacology [6,9] and
toxicology [10–14]. This ever increasing popularity is driven by
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several desirable properties of the zebrafish model, in particular
high fecundity which allows for a large number of embryos to be
simultaneously tested [15].

It should, however, be noted that different wild-type (WT)
strains differ in their genetics [16,17] which can result in differ-
ences in their behaviour [13,18,19]. For example, researchers have
found that different WT strains vary in their locomotor and
shoaling behaviour at different developmental stages. Variations
in the development of both behaviours have been reported
between AB2 and TU3 larvae. At the onset of locomotor behaviour,
the TU larvae have been observed as having a wider range of
activity when compared to AB larvae [19]. In addition, these
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strains have different rate in maturation of shoaling behaviour.
This variation has been attributed to the difference in neuro-
transmitter levels in the brains of these lines during development
[20]. AB larvae have also been shown to differ from TL larvae,
exhibiting greater activity in the dark at 5 and 6 days post-
fertilisation (dpf), and lower activity in both light and dark at
7 dpf than the TL larvae [13].

It is worth considering that these metrics have also been
observed to vary within the same WT strain. The study by Lange
and colleagues for example showed that not only the EK4, TU and
WIK5, but also, interestingly, the two AB lines from different labs
differed in their behaviour, such as the mean distance, speed and
duration of swimming [18]. Since these lines were originally
derived from the same founders, the large locomotor difference
may be caused by genetic drift, or alternatively, fish locomotor
behaviour can also be shaped by extrinsic factors. These factors
can include the size of the containing well [21], as well as the time
of day and light illumination levels [14]. With this in mind, con-
sidering all of the above results, it is critical to investigate the
unique responses in a particular WT strain in the design and
interpretation of behavioural studies.

A popular behavioural assay used in many of these studies is
the light-induced locomotor response (LLR) [22]. Upon a drastic
light onset or offset, zebrafish larvae display a visual startle
response. This would give rise to a rapid and characteristic
swimming behaviour that can be simultaneously measured across
multiple larvae. Different variants of LLR have been used to study
WT behaviour [13,18,19] and visual defects [12,15,22–24], and
screen neuroactive drugs [6,9,11,12]. In these studies, two major
methods were used to measure larval movement. One way is to
compare the larval position from frame to frame [6,12,15,22–24]. If
the change in position exceeded a pre-determined threshold, the
larva would be considered moving between these two frames.
Then, the larval activity over a period of time would be sum-
marised as the duration of movement per unit time. Another
popular way to measure larval movement is to track the individual
displacement in the whole video [11,13,18,19,25,26]. Using this
measurement, swimming speed and velocity, and speed of habi-
tuation of the larvae can be calculated. Despite the growing
popularity of the LLR assay, it still remains unclear whether the
initial short phase (first few seconds) of the LLR, i.e. the visual
motor response (VMR) [23], would vary for different WT strains.
The significance of this can be seen when considering the use of
zebrafish to screen eye drugs. The VMR is known to be primarily
driven by vision [23], while latter parts of the LLR are driven by
both vision and non-ocular photoreceptors [26]. While the VMR in
visual mutants has been studied [12,15,22–24], variations due to
genetic differences in WT strains are less clear. Many studies have
investigated LLR data by summarizing activity data into bins of a
minute or more in duration, so as to capture long-term beha-
vioural changes [11,13,14,18,19,21,25,26]. Hence, the dynamics
associated with the VMR changes, which occur in only the first few
seconds, are not distinguishable from the rest of the data it has
been grouped with. Of the few groups that have used the VMR to
interpret results [12,15,23,27], none have analysed different WT
strains.

The dynamical changes in zebrafish behaviour have recently
been analysed by various machine learning methods. They are
capable of identifying subtle differences which may be missed by
manual analysis [6,9,22,32]. For example, HMM has been used to
study the behavioural change in zebrafish under chemical stress
according to pre-defined behavioural patterns [29,30].
4 http://zfin.org/action/genotype/genotype-detail?zdbID¼ZDB-GENO-990520-2
5 http://zfin.org/action/genotype/genotype-detail?zdbID¼ZDB-GENO-010531-2
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Furthermore, hierarchical clustering has been used for drug
screening using zebrafish model, in which small molecules with
similar pharmacological activity were clustered based on similar-
ity in resulting behaviours of treated zebrafish [6]. Support vector
machine (SVM) has been used to categorize the episodes of
movement for zebrafish into several maneuvers, including slow
forward swim, routine turn, and escape. [31]. SVM has also been
used to develop a phenotype recognition model for toxicity
screening with zebrafish embryo [32]. Recently, we have also used
SVM to distinguish WT and mutant zebrafish by their different
responses to the light-stimuli [22]. These studies strongly
demonstrate the utility of machine-learning methods for analysing
the dynamical changes in zebrafish behaviour under chemical
stresses and genetic mutations.

Nonetheless, these studies utilised zebrafish with the same
strain/background. As indicated before, the strain difference may
affect resulting zebrafish behaviour and subsequent data analysis.
Thus, it is critical to conduct a control study of the WT zebrafish
dynamical changes using machine-learning methods, to facilitate
their use in dynamical analysis of zebrafish behaviour. In this
paper, we used machine learning techniques to study the differ-
ence in the VMR and LLR between various WT strains from 3 to
9 dpf. The contribution of our work is threefold: First, our study
has demonstrated that the inherent differences between the WT
strains affect classification accuracy. Hence, it is critical to use
matching WT strains as proper controls in machine-learning stu-
dies. Second, our study has revealed that different time lengths
should be used to classify locomotor behaviour under light onset
and light offset, so as to achieve the best accuracy. This informa-
tion is critical for the field to design efficient assay scheme. Third,
our results have also suggested that the distinguishable informa-
tion of WT strains in the light-ON response differs from that in the
light-OFF response. For example, when using the 30-min LLR,
three WT stains displayed a larger difference under the light-OFF
stimulus than under the light-ON stimulus. This difference again is
critical for future studies that aim at using machine-learning
methods to analyse similar behavioural responses.
2. Materials and methods

2.1. Zebrafish maintenance, breeding and embryo collection

In this study, three strains of WT zebrafish were used: AB, TL
and TLAB6 (AB/TL: A hybrid of AB and TL). They were maintained,
bred and the embryos collected according to standard procedures
[33]. Specifically, the collected embryos were maintained in E3
medium at 28 °C in an incubator with the same light-dark cycle as
in the fish facility. The medium was changed every day and
unhealthy embryos were discarded. At 3 dpf, healthy embryos
were further selected based on the following criteria: no visible
physical defects such as bent spines, bloated bodies or other
deformities. These healthy embryos were transferred to a 96-well
plate for use in the subsequent behavioural assay. The health of
these embryos was then inspected every day. During the inspec-
tion, embryos or larvae that showed any signs of abnormality
during the course of behavioural experiment were excluded from
the final data analysis. The numbers of animals used on each day
are summarised in Table 1, which shows the number of health fish
from two biological replicates with 96 embryos per run. All pro-
tocols were approved by the Purdue Animal Care and Use
Committee.
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Table 1
The sample size of each WT strain per dpf.

WT Strains 3 dpf 4 dpf 5 dpf 6 dpf 7 dpf 8 dpf 9 dpf

TLAB 188 185 190 185 183 182 190
TL 192 178 176 176 173 183 173
AB 192 192 192 191 189 188 186

Fig. 1. The illustration of key features.
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2.2. Behavioural data analysis

The behavioural analysis can be broken down into three main
components: data collection, feature extraction and classification
[22]. An overview of these components is outlined here and the
details of each component will be described in the next sections.
The LLR data was collected and pre-processed by Zebrabox
(Viewpoint Life Sciences, Lyons, France) to give the zebrafish
movement in terms of the movement burst duration. After that,
the behavioural data were represented by a set of features that
have been specifically defined to describe the LLR and VMR data of
zebrafish [6,22]. Then, these features were analysed by the clas-
sification algorithms to allocate the larval samples into distinct
groups corresponding to different strains. Specifically, the algo-
rithms utilised the numerical values obtained from the features as
a descriptor of a specific larva to decide which strain best fit the
observed behaviour of that larva. In an independent study, the
same dataset was also used to establish a statistical framework for
analysing similar behavioural data, and for evaluation of inherent
variations of the experiments [34].

2.2.1. Behavioural data collection
All behavioural experiments were conducted inside an appa-

ratus called Zebrabox (Viewpoint Life Sciences, Lyons, France), in
which the larvae were plated in a 96-well plate, isolated from light
from the environment, and stimulated by white light controlled by
a light-controlling unit from the bottom of the plate. The larval
movement was recorded by an infra-red camera under continuous
infra-red light illumination, which the larvae could not perceive.
With this setup, the behavioural data was collected based on
Emran and colleagues' framework [23,27]. In brief, the larvae were
placed in a 96-well plate inside the Zebrabox for 3.5 h of dark
adaptation. During the assay, a bright white light stimulus with
stable intensity at 1390.94 lx was shone in the following sequence:
ON-OFF-ON-OFF-ON-OFF, each for a period of 30 min. The move-
ment of the larvae was detected by an infra-red camera that
captured video at a rate of 30 frames per second. Then, a move-
ment metric (burst duration) was defined by the following
method. Firstly, it is necessary to identify the active pixels that
represent the movement of a larva in consecutive frames. This was
achieved by setting a detection sensitivity threshold, such that,
when the change in the grey level of a pixel between successive
frames was greater than the detection sensitivity, the pixel was
considered active. In this study, the detection sensitivity was set at
6 with the grey level ranging from 0 to 255. Following this, a burst
threshold (BT) was set so that when the number of active pixels in
consecutive frames were larger than the BT, the movement was
defined a burst (i.e. a true movement regarded by our assay). In
our analysis, we set BT¼0 in order to utilise all the active pixels
without filtering out any subtle differences between the strains.
This approach provides the best classification performance as
demonstrated in our previous study [22]. The data was then seg-
mented into 1-s bins, for each bin the duration of the frame-to-
frame movement (i.e. the bursts) is given as the burst duration,
that is, the fraction of the 1 s bin that a larva moves. For the
sequence of 6 repeated light-stimuli (ON-OFF-ON-OFF-ON-OFF),
Please cite this article as: Y. Gao, et al., Computational classification o
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we treat each ON-OFF sequence as one trial, and the three ON-OFF
trials are averaged for further analysis.

The scheme described above was used to collect larval move-
ment data from 3 to 9 dpf with the dark adaptation of all
experiments starting at approximately 11 a.m. These develop-
mental stages cover the period when the retina begins to differ-
entiate and the initial visual behaviour first appears [35–37] to the
last stage zebrafish can survive without feeding. For each WT line,
two independent replicates were run using a full plate of 96
healthy embryos. The health of the embryos was inspected every
day and half of the mediumwas replaced. Any embryos/larvae that
showed gross morphological defects during the course of the
experiments, such as inflated swim bladder or bent trunk ver-
tebrae were excluded from the final data analysis.

2.2.2. Feature extraction and classification
In this work, we employ the feature set that we used previously

[22], which implements a set of empirically selected biological
metrics and is an extension of the method presented in [6]. This
approach has been experimentally verified as an effective descriptor
of zebrafish behaviour triggered by light ON/OFF, and can lead to
better classification accuracy when compared with other methods
such as Symbolic Aggregate approXimation (SAX) [38].

In order to quantify the amount of continuous movement of the
zebrafish, we explicitly define two metrics: “active bout” and “rest
bout”. An active bout is the number of consecutive bins in which
the burst durations are larger than zero, with the opposite being
regarded as a rest bout. The definitions of active/rest bout are
illustrated in Fig. 1.

In the following, we extracted the lengths of the first active/rest
bout, and the average lengths of all active/rest bouts as features.
Specifically, the length of a bout is defined as the number of bins
within that bout. We also used the mean of the total response (and
active response) as features, which is the average of all the burst
durations (and the average of only the positive burst durations) in the
whole time-series dataset. In addition to the metrics describing the
amount of activity, sample entropy is also used as a feature to
quantify the randomness, or complexity, of the movement. Sample
entropy is measure based on a conditional probability of the simi-
larity between two sequences of data (please refer to Section S1.1. of
supplementary material for details). This approach is commonly used
to measure physiological time series [39,40]. The elements of the
feature set used in this study are shown in Table 2.

Having defined the feature set, classification algorithms were
implemented to distinguish different zebrafish strains. As our
previous results showed that the support vector machine (SVM)
f different wild-type zebrafish strains based on their variation in
dx.doi.org/10.1016/j.compbiomed.2015.11.012i
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Table 2
Elements of feature set.

Maximal amplitude Length of first active bout
Number of rest bouts Length of first rest bout
Number of active Bouts Mean of the total response
Averaged rest bout length Mean of the active response
Averaged active bout length Sample entropy
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classifier provided a more consistent classification of different
zebrafish mutants [22], the results presented hereafter, used SVM
to study the differences of zebrafish strains7. The results obtained
from other classification methods are presented in Table S1 and S2
of the supplementary material, and support the choice of SVM as a
superior method for classifying zebrafish locomotor behaviour.

In this work, we fixed the hyperparameters of SVM as the ones
used in our previous research on the zebrafish classification [27]:
the coefficient of slack variables was set to 2 and the kernel width
was set to 0.125. To the best of our knowledge, fixing these
hyperparameters is the most commonly-used way before training
the model for the problemwith a specific application. In this study,
we have only one group of hyperparameters (i.e. one model), and
we used this model for studying the difference between different
zebrafish strains. Hence, there is no validation set for model
selection.

To ensure that reliable results were obtained, cross validation was
conducted. Cross validation is an approach for estimating the expec-
ted level of fit of the model to a data set (i.e. the validation set) that is
independent of the data that are used to train the model (i.e. the
training set). These validation and training datasets are partitioned
several times from the whole data set for multiple trials, such that
they are independent from and complementary with each other in
each trial. The results of all trials will be averaged. In this study, we
used 500 times 10-fold cross validation for each classification pro-
blem. That is, the dataset was randomly divided into 10 equal-sized
complementary parts. For each trial, 9 parts were chosen for training,
whereas the remaining 1 part was used for validation. This procedure
was repeated until each of the 10 parts had been used exactly once as
the validation data to give a 10-fold cross validation. Finally, this
procedure was repeated 500 times to give 500 times 10-fold cross
validation. This cross-validation procedure provided a useful estimator
of model performance [42], because the mean accuracy estimated
from multiple partitions of training and validation dataset better
accounted for the data distribution of the whole dataset. In other
words, it avoided the problem in single-partitioned data that the
training and validation datasets might obey different data distribu-
tions [42].

In the following sections, we used classification accuracy as the
metric to illustrate the results. The accuracy is defined by the
following equation:

accuracy¼ number of correctly classified samples
total number of samples

� 100%
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3. Results

Fig. 2 shows the plot of mean burst duration for the TL, AB and
TLAB strains at 3 dpf. This plot was chosen in order to give an
intuitive representation of the difference in behaviour among
zebrafish strains, since this is the stage when the retina matures
and the initial visual behaviour can be detected [35–37]. For
brevity, the remaining plots of burst duration at different stages of
development are provided in in the supplementary material
130
131
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3.1. Evaluation of the differences between three WT strains by
machine learning

The activity data (e.g., Fig. 2) were used for classification by
SVM. Specifically, two time periods were used as input data:
(1) the complete LLR dataset with 30 min for each light onset and
offset (30-min LLR); and (2) the first 30 s of the LLR dataset after
light change (first 30-s LLR). As this initial period of activity is
substantially driven by vision, it is also known as the VMR. The
overall classification accuracies utilising the 30 min-LLR and the
first 30-s LLR (VMR) are summarised in Fig. 3. In both cases, light
onset (light-ON) and light offset (light-OFF) data were incorpo-
rated into the SVM models. In terms of the two-class classification
problems (i.e. TLAB vs. TL, TLAB vs. AB, TL vs. AB), the accuracies
for TL vs. AB outperformed others in most cases, especially when
using the first 30-s LLR (VMR) (the only exception is for 5-dpf
data). Also, the highest accuracies for two-class problems, 86.0%
(using the 30-min LLR) and 90.6% (using the first 30-s LLR [VMR]),
were achieved when classifying TL and AB on 8-dpf data. Fig. 3
also shows that the accuracies of the 3-class problem (TLAB vs. TL
vs. AB) were significantly lower. One interpretation is that
although we could find a discriminative margin in SVM which
distinguished TL from AB, this margin did not hold after adding
the TLAB data. This is because TLAB is a hybrid of TL and AB and
may share similar behavioural traits, therefore, TLAB's features
were likely to appear within the margin and compromise the
discriminatory power. As the TL and AB strains possessed the most
significant difference, we focus the analysis on these two strains
hereafter.

3.2. The effects of developmental change and different amounts of
data on classification accuracy

The difference in the LLR of WT strains also varied with stage.
Fig. 4 shows the classification accuracies of TL vs. AB using the 30-
min LLR and the first 30-s LLR (VMR). Again, both light-ON and
light-OFF data were incorporated into these SVM models. In both
cases, the highest accuracies were achieved with 8-dpf data (i.e.
85.95% for the 30-min LLR and 90.61% for the first 30-s LLR [VMR]).
For the classification using the 30-min LLR, the accuracies mono-
tonically increased until 8 dpf. Whereas for classification using the
first 30-s LLR (VMR), the accuracies following the initial increase,
exhibited a drop in performance at 5 and 6 dpf before reaching its
maximum at 8 dpf. In both classification cases, a slight decrease in
accuracy was observed at 9 dpf. The results also showed that in
most cases (3, 4, 7, 8, and 9 dpf), the accuracies using the first 30-s
LLR (VMR) outperformed those using the 30-min LLR, suggesting
that TL and AB have a larger difference in their first 30-s
LLR (VMR).

3.3. The difference in classification accuracy between the light-ON
and light-OFF responses

In order to investigate the difference in LLR when using the
light-ON stimulus compared to the light-OFF stimulus, we con-
ducted classification studies with the features extracted from each
stimulus separately. Fig. 5 shows the classification accuracy for TL
vs. AB during light-ON period or light-OFF period using the 30-min
LLR (left sub-figure) and the first 30-s LLR (VMR) (right sub-fig-
ure). The classification accuracies in both cases were generally
lower than those when both light-ON and light-OFF data were
combined (Fig. 4). Further, the results show that the classification
accuracies were higher during the light-OFF stimulus than the
light-ON stimulus in the 30-min LLR (Fig. 5, left sub-figure). This
observation is consistent with that revealed by the mean plots of
Burst Duration against time (Fig. S1–S7 of the Supplementary
f different wild-type zebrafish strains based on their variation in
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Fig. 2. Plot of mean burst duration for three WT strains at 3 dpf. This plot shows the averaged burst duration of three WT strains: TLAB (red trace), TL (green trace), and AB
(blue trace) at 3 dpf. The first and last 1800 s (30 min) represent the averaged response of three repeats of the ON-OFF stimulus sequence, respectively. The ON and OFF
stimuli are indicated by the white and black bars at the top. The total number of larvae is indicated in the inset. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Classification accuracy for different WT zebrafish strains from 3 to 9 dpf using LLR data of different lengths. The left figure shows the classification results using the 30-min LLR,
while the right figure shows the results using the 30-s LLR (VMR). In each figure, there are four line plots indicating the classification accuracies for TLAB vs. TL (green), TLAB vs. AB
(blue), TL vs. AB (red), and TLAB vs. TL vs. AB (black) respectively. These line plots are the average of the 500 times 10-fold cross validation. Data from both light-ON and light-OFF stimuli
were used in this analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Classification accuracies for TL vs. AB from 3 to 9 dpf using LLR data of
different lengths. In this plot, the classification was conducted using data either
from the 30-min LLR (red) or the first 30-s LLR (VMR) (blue). The activity from both
light-ON and light-OFF stimuli were used in the analysis. The line plots and the
error bars indicate the mean and the standard deviation of the 500 times 10-fold
cross validation. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Material). Over the whole 30-min duration of light-OFF stimulus,
the larvae were more active. This higher activity should provide
more discriminative features, such as Number of Active/Rest Bout,
and Sample Entropy for classification.
Please cite this article as: Y. Gao, et al., Computational classification o
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Conversely, in the first 30-s LLR (VMR), the classification
accuracies were higher during the light-ON stimulus than the
light-OFF stimulus (Fig. 5, right sub-figure). The most significant
difference in accuracies between the light-ON and light-OFF sti-
muli was seen at 3 and 4 dpf. This observation is also consistent
with the lack of activity in the light-OFF mean plots compared
with the light-ON ones for TL and AB at 3 dpf (Fig. S1 of the
Supplementary Material). At 4 dpf, a much bigger difference
between these strains is seen in the light-ON mean plots than the
light-OFF ones (Fig. S1 of the Supplementary Material). Starting
from 5 dpf onwards, the classification accuracies between the
light-ON and light-OFF became comparable, with the accuracies
for the light-ON stimulus being slightly higher.
4. Discussion

Different strains of WT zebrafish display different behaviours
[43]. When their larvae are used in high-content behavioural
studies, the variation in their behaviours [13,18,19] can affect the
resulting interpretations. Among the high-content behavioural
assays, use of the LLR has become very popular. However, most of
the studies that utilised LLR analysed the data by binning the
activities in mins. This approach does not permit the analysis of
critical visual input that takes place during the first few seconds.
For the few studies that analysed the data by binning the activities
in seconds (i.e. utilising VMR), none studied the differences
between WT strains. In this paper, we binned the data in seconds,
f different wild-type zebrafish strains based on their variation in
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Fig. 5. Classification accuracies for TL vs. AB from 3 to 9 dpf using light-ON and light-OFF LLR data of different lengths. The left figure shows the classification results using
the 30-min LLR data, while the right figure shows the results using the 30-s LLR (VMR) data. In each figure, the light-ON and light-OFF results were shown by the dotted line
and solid line respectively. The line plots and the error bars indicate the mean and the standard deviation of the 500 times 10-fold cross validation.
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and determined the difference between the complete 30-min LLR
and its first 30-s subset (VMR) between three WT strains: AB, TL
and TLAB. They were compared during early development from
3 to 9 dpf. The observations are summarised below.

First, the LLR varies between different WT strains at different
stages (Fig. 2 and Fig. S1–S7 of the Supplementary Material), so
that they can be moderately distinguished when compared pair-
wise (Fig. 3). In general, the change in classification accuracies
during development has no clear pattern or trend. Nonetheless,
the classification accuracies for TL vs. AB, when using the first 30-s
LLR (VMR) data, were higher than the comparisons with TLAB.
Since TLAB is a hybrid of TL and AB, its behaviour may have aspects
in common with both; whereas the behaviours of TL and AB may
be more distinct from each other. The relatively higher accuracies
when classifying TL vs. AB obtained on 8 and 9 dpf implies that
there were some major differences in locomotor behaviour
development between TL and AB, particularly at later stages.

Second, our analysis revealed differences in the behaviour of AB
and TL when using just the first 30-s LLR (VMR) data. While the
difference in the longer-scale LLR between TL and AB was first
observed by de Esch and colleagues [13], in their study, the LLR data
were summarised in terms of minutes. While in our study, the data
were summarised in seconds. This is the first demonstration that the
short-term behavioural dynamics can be different between different
WT strains. This finding is corroborated by the fact that using the first
30-s LLR (VMR) yielded superior accuracies compared with using the
30-min LLR for all stages except for 5 dpf (Fig. 4). Furthermore, the
highest accuracy achieved in this study (90.6% for TL vs. AB at 8 dpf)
was obtained using the first 30-s LLR (VMR) data. Thus, the VMR can
provide desirable discriminatory power for behavioural changes
because the most distinguishable information was detected immedi-
ately after the light change. This difference in the acute response (the
first 30-s LLR [VMR]) of the WT strains implies a difference in their
vision or locomotor circuitry, which would be distinct from the one
that drives the long-term response (the 30-min LLR).

Third, the higher classification accuracy obtained in light-OFF sti-
mulus suggests that three WT stains displayed a larger difference
under the light-OFF stimulus than under the light-ON stimulus
(Fig. 5). As larvae had a higher activity after light offset, the light-OFF
classification accuracies were higher than the light-ON ones. This was
true at all developmental stages tested when using a longer dataset
(the 30-min LLR). A reverse trend was observed when a shorter
dataset (the first 30-s LLR [VMR]) was used. This is probably due to
Please cite this article as: Y. Gao, et al., Computational classification o
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latter dataset measured a longer time span and captured extra speed-
of-habituation information [25] that would only be apparent in
minutes. Nonetheless, the classification accuracies in either light-ON
or light-OFF stimulus are lower than that when both stimuli are
combined (Fig. 4). Therefore, we recommend combining both light-
ON and light-OFF data to achieve the best classification accuracy.

Several recent studies have begun to reveal the neural circuitry for
the acute response (the first 30-s LLR [VMR]) and long-term response
(the 30-min LLR), and for the light-ON and light-OFF response. Farida
and colleagues first described eye function was essential for the acute
response [23]. In particular, an eyeless chokh/rx3 mutant did not dis-
play a VMR. By collecting VMR data in the same way (i.e. per second),
we showed that the first 30-s LLR (VMR) was different from the long-
term response (the 30-min LLR) in WT, strongly implying that the eye
function substantially contributes to the first 30-s LLR (VMR). Inter-
estingly, the same chokh mutant showed a slow light-OFF response
that was apparent in minutes, when the behavioural data were col-
lated into bins of minutes [26]. The authors revealed that pineal gland
and a small region of hypothalamus perceived light offset, and con-
tributed to this slow light-OFF response. Compared with the light-OFF
response, less is known about the light-ON response. Nonetheless,
both responses belong to the classical visual startle response in teleost
fish [30,44] that can be triggered by rapid light onset and offset [45],
or a looming stimulus [44,46, 47]. Thus, the current knowledge of
startle response may give us further insights into the neural basis of
different components of the VMR/LLR.

It has long been known that vibration-triggered startle response is
initiated by a specific pair of Mauthner (M) cells in the hindbrain
[44,48,49]. M-cell axon projects to the contralateral spinal cord, and
innervates the primary motoneurons by direct and indirect connec-
tion [50–52]. As the M-cells receive visual inputs [53,54], these cells
may drive the VMR. However, two recent studies have shown that the
M-cells may not drive the critical part of the light-OFF VMR. In one of
these studies, Burgess and Granato used a high-speed camera (in
millisecond resolution) to capture the startle response after a dark
flash [45]. They observed a new initial locomotor response from the
larvae that they termed O-bend, in which the larvae twisted the body
to form a circular shape. This O-bend is distinct from a less drastic
version of body twisting called the C-bend/C-start response, which is
long known to be initiated by the M-cells [44]. In fact, when the M-
cells were ablated, the larvae still display an intact O-bend after the
dark flash [45]. Interestingly, the O-bend is abolished after eye enu-
cleation, suggesting that this locomotor response is initiated by retina
131
132
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[26]. Therefore, it is likely that a different brain circuitry mediates this
retinal-initiated O-bend, even though M-cells may drive different
parts of the VMR/LLR. A possible candidate of this brain circuitry is the
larger pool of reticulospinal neurons including M-cells [55] in the
brainstem escape network (BEN) [50,51,56]. These neurons have been
shown to control different parts of the escape response [57,58]. Thus,
these neurons may control different parts of the VMR/LLR.

Our ongoing work will determine the details of visual inputs to
the VMR/LLR, while future work should also focus on pinpointing
the responsible circuit in the BEN that drives the response, and the
genetic variations between the WT strains that caused the
observed difference in their behavioural output. Before then, as
different WT strains behave differently, VMR/LLR data obtained
from one strain should be interpreted and generalised with care.
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5. Conclusion

In summary, our investigation has used SVM to show that
different WT larvae display different LLR. The SVM analyses also
indicate that the distinguishable information in the VMR is com-
parable to, if not better than, the full LLR dataset for classification
purposes. Furthermore, the distinguishable information of WT
strains in the light-onset response differs from that in the light-
offset response. While the classification accuracies were higher for
the light-offset than light-onset response when using the com-
plete LLR dataset, a reverse trend was observed when using a
shorter VMR dataset. These behavioural differences are likely
caused by differences in the neural circuitry and/or visual inputs.
Our ongoing work will determine the details of visual inputs to the
VMR/LLR, while future work should also focus on pinpointing the
responsible circuit in the BEN that drives the response, and the
genetic variations between the WT strains that caused the
observed difference in their behavioural output. Before then, as
different WT strains behave differently, VMR/LLR data obtained
from one strain should be interpreted and generalised with care.
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