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Abstract— Hand gesture recognition from forearm surface 

electromyography (sEMG) is an active research field in the 

development of motor prosthesis. Studies have shown that 

classification accuracy and efficiency is highly dependent on the 

features extracted from the EMG. In this paper, we show that 

EMG spectrograms are a particularly effective feature for 

discriminating multiple classes of hand gesture when subjected 

to principal component analysis for dimensionality reduction. 

We tested our method on the Ninapro database which includes 

sEMG data (12 channels) of 40 subjects performing 50 different 

hand movements. Our results demonstrate improved 

classification accuracy (by ~10%) over purely time domain 

features for 50 different hand movements, including small 

finger movements and different levels of force exertion. Our 

method has also reduced the error rate (by ~12%) at the 

transition phase of gestures which could improve robustness of 

gesture recognition when continuous classification from sEMG 

is required. 

I. INTRODUCTION 

Modern prosthetic designs have provided dexterous 
solutions for amputees to restore their motor function. 
Because of its ease of use and non-invasiveness surface 
electromyography (sEMG) is a promising source of control 
signal for these prostheses [1]. However, sEMG can be 
sensitive to various factors, such as electrode placement, and 
recording environment. Despite these problems, EMG 
recordings at relatively high sampling rates, in the order of 
kHz, with multiple electrodes are commonly used to control 
the prosthesis [2, 3]. A wide range of pattern recognition 
techniques have been previously tested to classify the intended 
movements, with proper feature extraction from the high 
dimensional data key to accurate movement recognition. A 
variety of features which can extract the useful information 
embedded in the EMG signal and discard interference and 
unneeded parts have been tested [4]. These include both time 
domain and frequency domain features and have had different 
levels of success depending on the experimental design, 
number of electrodes, and types and number of movements [5, 
6].   

Hand movements are dynamic processes and hence, in 
order to produce more natural movements in real-life 
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scenarios, systems which provide continuous recognition of 
movement are desirable. In such applications, time-frequency 
domain features could provide a more complete representation 
of the information contained within the data than either time or 
frequency domain only features. Time-frequency domain 
features have previously been shown to be applicable for 
forearm movement classification with a small number of 
movement classes [7] as well as for myopathy and neuropathy 
diagnosis in clinical applications [8]. However, high 
dimensionality and high-resolution in time-frequency features 
present a major hurdle to the computational efficiency 
required for real-time applications, hence, some form of 
dimensionality reduction is necessary [7, 9]. 

In this study, we suggest that spectrograms followed by 
principal component analysis (PCA) provides effective 
features for hand movement classification even with a large 
class of movements. We hypothesize that projection of EMG 
spectrogram onto subsets of principle components can 
improve information representation of sEMG while reduce 
computation load. The results are compared with time-domain 
inputs using standard classification method for short-latency 
continuous classification of hand movements from a publicly 
accessable database. 

II. METHODOLOGY 

The workflow of our method including data preprocessing, 
spectrogram calculation, normalization, PCA and support 
vector machines (SVM) classification is summarized in Fig. 1.  

A. Ninapro Database 2 

 The Ninapro (Non-Invasive Adaptive Hand Prosthetic) 
database 2 used in this study contains surface EMG data 
recordings from 40 intact-subjects [10]. Each subject 
performed 49 movements: 8 isometric and isotonic hand 
configurations; 9 basic wrist movements; 23 grasping and 
functional movements; as well as 9 force patterns. 
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Figure 1.    Flow chart of the proposed method. 

 



  

Classifications were performed on these 49 movements plus a 
rest posture. Each movement was repeated 6 times with a 3 s 
rest in between. The EMG data was recorded using 12 Trigno 
Wireless electrodes (Delsys Inc.) sampled at 2000Hz. The 
data was filtered using a Hampel filter to remove 50Hz (and 
harmonics) power line interference. The data was provided 
with two different sets of labels, the raw labels, taken from the 
stimuli, and a relabeling. The relabeled data realigned the 
movement boundaries by maximizing the likelihood of a 
rest-movement-rest sequence using an offline generalized 
likelihood ratio algorithm.  

B. Data preprocessing 

The data preprocessing followed the same procedures as 
those described in the Ninapro database [10], with each 
channel being processed independently. For each movement, 
the 1

st
, 3

rd
, 4

th
 and 6

th
 repetitions are used as the training set, 

while the other two are used as the testing set. Each movement 
is followed by a 3 s rest, giving a total of 294 repetitions of the 
rest posture. In order to balance the number of repetitions 
across all movements, six repetitions of the rest posture are 
selected randomly for the classifier training and testing sets. 
To compute the spectrogram the EMG signals are divided into 
200ms (400 sample) segments with 100ms (200 sample) 
increments. The recognition system gives a prediction for each 
segment, such a short segment duration is chosen as this is 
desirable for continuous classification in real-life applications 
[11]. 

C. Spectrogram Calculation 

 The spectrogram of each segment is computed by 256 
point fast Fourier transform (FFT) using a 256 sample 
Hamming window with 184 sample overlap. Thus, each 400 
sample segment results in a spectrogram calculated at 129 
different frequencies with 3 time bins. The energy of the EMG 
was observed to vary mainly over frequencies ranging from 
0Hz to approximately 700Hz. Hence, to improve 
computational efficiency, we only use the first 95 points of the 
spectrogram which accounts for frequencies up to 736.43Hz, 
an example of the spectrogram over these frequencies is given 
in Fig. 2a. Thus, each data segment results in a 95×3 feature 
matrix. 

D. Normalization 

Before applying PCA to the spectrogram, the 
spectrograms of each channel are scaled into a range from 0 to 
1 via a maximum-minimum normalization method. The 1

st
 

and 99
th
 percentiles will be considered as minimum value and 

maximum value respectively. Values beyond this range will 
be forced to be 0 or 1. Hence, the normalized spectrogram, 

i

norm
Data , for channel i,  is calculated by 
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E. Principal Component Analysis 

Normalized spectrogram matrices from each segment are 
then vectorized and all 12 channels are concatenated. The 
resultant vectors contain 95×3×12 elements making it 
computationally expensive to utilize all data to the classifier 
directly. Therefore, we will apply PCA to the spectrogram 
data to reduce the dimensionality of the data whilst also 
retaining the useful information from the EMG signals. For 
each subject principal component analysis is performed on all 
the segments across all the gestures in the training set. The 
weightings of the contributions of the principal components to 
each segment are then used for classification. 

Fig. 3 shows an example of the variance accounted for and 
classification accuracy for increasing number of principal 
components (PCs). This result suggests that to achieve a good 
classification accuracy it is sufficient to use the first 40 – 120 
components. In fact, including more components may 
compromise accuracy since these components possibly 
contain noise. In the following analysis, we retain the first 100 
PCs, which account for on average approximately 57.45% of 
the variance for all subjects. 

We also assume that both training and testing data share 
the same PCs. This is analogous to the observations that 
muscular synergies are robustly preserved across a variety of 
biomechanical or behavioral contexts [12]. Hence, testing data 
will be projected onto the PCs obtained from the training set 
when testing the accuracy of the classifier. 

F. Support Vector Machine Classification 

 Previous results have shown that SVM has offered the 
highest classification accuracy for Ninapro Database [10].  
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Figure 2.    (a) Spectrogram of raw data and (b) the reconstructed 

spectrogram using the first 100 principal components. 
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Figure 3.    Accumulated variance accounted for and average classification 

accuracy of the first subject 

 



  

Open source C++ library LIBSVM [13] is used in this study to 
implement the SVM classifier. To obtain the optimal values 
for the hyper-parameter pair (c, γ) for the SVM classifier, 
following the approach from [14], a grid search is performed 
for each subject over the range,  

 
2 , 2, 1, ,13,14

2 , 12, 11, , 6, 7

i

j

c i
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   

   
  (2) 

A 4-fold cross-validation method is used to select the best 
combinations of (c, γ).  

III. RESULTS 

Fig. 2 shows the spectrograms for both the raw data and 
the reconstruction of the first 100 PCs. For simplicity only the 
first time bin of each segment is shown. While the major 
time-frequency content defining the movement has been 
retained in the reconstructed spectrogram (Fig. 2b) the 
reconstruction provides a smoothed representation of the data.  

Root mean square (RMS) of the EMG signal has been 
shown to be a useful and simple time-domain feature for hand 
movement classification in previous studies [5, 10]. As such, 
RMS was used as a benchmark for our method. The RMS of 
the EMG is computed for each 200ms segment, and is then 
normalized and classified using SVM in the same way as 
described in Section II.   

Classification was performed using both the raw labeled 
and relabeled data with either the spectrogram/PCA or RMS 
as features. The overall accuracies, averaged over all subjects 
and all movements, are summarized in Table I. .  

The average accuracy of our proposed method on the 
relabeled data is 77.41%, which is 9.75% higher than when 
using the RMS as a feature. Note also that we have obtained 
higher overall accuracy than the best results reported by Atzori 
et al. when using the same dataset with a combination of four 
different sets of features [10]. As relabeling can only be 
obtained offline, for real-life applications, accurate 

classification of the raw labeled data is critical. Our method 
also offers over 10% higher overall accuracies on the raw 
labeled data than when using the RMS.  

To further investigate the performance of the proposed 
approach we next consider the classification accuracy for each 
type of movement separately. Fig. 4 shows that on average, the 
spectrogram with PCA performs better in every movement 
except resting (index 1), which is slightly lower in accuracy 
(65.03% vs. 68.46%, p>0.01, paired t-test). This is probably a 
result of the random selection of a subset of rest posture for 
training the classifier. 

Table II shows the classification accuracy for the three 
different types of movement: basic movements; grasping and 
functional movements; and force patterns. For the first 40 
movements (index 2 to 41) which includes the isometric and 
isotonic hand configurations, basic wrist movements, as well 
as the grasping and functional movements, our results using 
the spectrogram with PCA show >11% improvement in the 
average classification accuracy when compared to using the 
RMS (p<0.01, paired t-test). The improvement in the 9 force 
pattern movements (index 42 to 50) is smaller but still 
statistically significant (88.15% vs. 82.88%, p<0.01, paired 
t-test). 

Significantly, we note that the largest errors are found in the 
classification of the segments close to the transition phase of 
movements, that is, the beginning and the end of a movement. 
We divided each movement into 7 parts and evaluated the 
classification accuracy for each of them. Each of the first 3 
parts contain 4 segments, starting from the beginning of the 
movement. The last 3 parts contain the corresponding 12 
segments before the end of the movement. The remaining 
segments are considered the middle of the movement. The 
average classification errors over all subjects and all 
movements were computed for each of these 7 parts. Fig. 5 
verifies that the largest classification errors are found at the 
transition phases of movements, and as the movement 

Table II. Classification accuracy for different types of movements 

Movement Type RMS Spectrogram PCA 

Basic movement (index 2 to 18) 64.71% 75.74% 

Grasping and functional 

movement (index 19 to 41) 
55.13% 67.61% 

Force pattern (index 42 to 50) 82.88% 88.15% 

 

Table I. Overall Accuracy 

Accuracy RMS Spectrogram PCA 

Relabel 67.66% 77.41% 

Raw Label 63.65% 74.18% 
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Figure 4. Average accuracy over  40 subjects for rest posture (index 1) and each of 49 movements (isometric and isotonic hand configurations (index 2-9), 

basic wrist movements (index 10-18), grasping and functional movements (index 19-41), and force pattern (index 42-50)). 
 



  

progresses, classification accuracies improve. While this is 
true regardless of the method used, the spectrogram with PCA 
consistently has smaller errors compared to the RMS 
throughout the execution of movements (p<0.01, paired 
t-test), hence, providing more robust movement recognition 
when continuous classification is required.  

IV. CONCLUSION 

The results presented here show that time-frequency 
features of surface EMG can provide improved hand 
movement classification over solely time domain features, 
partly due to noise rejection in the spectrogram. With 
appropriate dimensionality reduction, it can also become a 
computationally efficient approach. Our results are consistent 
with the findings by Englehart el al. [7]. However, we have 
demonstrated higher performance here for much larger 
electrode numbers (4 vs. 12) and larger variety of movements, 
including finer movements (4 classes of elbow and forearm 
movement vs. 49 classes of functional hand/finger movements 
and force patterns).   

The choice of number of principal components to be 
included in the classifier is important. Excessive number of 
components would increase computational load as well as 
deteriorate classification accuracy, probably as a result of 
overfitting to noise. Our results have shown that there were 
minor effects on the classification accuracy when we used 
40-120 components. Hence, in practice, we can further speed 
up the classifier by using a smaller number of components 
without compromising performance. However, the small PCs 
being discarded in our experiments may actually contribute to 
the skillfulness of movement execution [15], and hence may 
be useful when fine-tuning of joint movement is needed, for 
example, when manipulating different objects. 

Surprisingly, classification error in the rest posture was not 
improved when using spectrogram/PCA compared with RMS. 
We observed that the rest postures were commonly 
misclassified as the movement which that particular rest was 
neighboring. It is possible to circumvent this limitation by 
adding another binary classifier to distinguish resting and 
action based on some time domain features.  

To offer reliable continuous movement classification for 
real world prosthetic application, it is important not only to 

classify the movement per se, but is also important to provide 
accurate onset and termination of a movement. From the 
results obtained in this study these transition phases present 
the biggest challenge to accurate classification of movement 
from EMG, regardless of the features used or the types of 
movement of interest.  The time-frequency domain features 
have provided more useful information than time domain 
features in capturing the onset and offset timing of movement 
and further improvement may be possible using a longer 
segment.  

The combination of spectrogram/PCA/SVM offers a 
simple yet efficient framework for hand movement 
classification problems with potential for real-time 
application. 
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Figure 5.  Classification error at different phase of a movement. “Start” and 

“End” denote the onset and termination of a movement respectively. 

 


