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Abstract— Fingertip force coordination is crucial to the
success of grasp-and-lift tasks. In the development of motor
prosthesis for daily applications, the ability to accurately
classify the desired grasp-and-lift from multi-channel surface
electromyography (sEMG) is essential. In order to extract
reliable indicators for fingertip force coordination, we searched
an extensive set of sEMG features for the optimal subset
of relevant features. Using mutual information based feature
selection we found that a subset of not more than 10 sEMG
features selected from over seven thousand, could effectively
classify object weights in grasp-and-lift tasks. Average classi-
fication accuracies of 82.53% in the acceleration phase and
88.61% in the isometric contraction phase were achieved.
Furthermore, sEMG features associated with object weights
and common across individuals were identified. These time-
domain features (entropy, mean/median absolute deviation,
pNNx) can be calculated efficiently, providing possible new
indicators.

I. INTRODUCTION

Surface electromyography (sEMG) has been extensively
utilized in clinical applications and human-machine inter-
faces [1], [2]. Since the sEMG signal is essentially an
aggregate of motor unit action potentials, it reflects both
neural activation of muscles and structural changes in the
muscle itself [3]. Multi-channel sEMG recorded from several
muscles, therefore, provide the ability to estimate both the
movements and the force level. Decoding the intention of
individuals from sEMG signals is significant in order to
provide accurate low-latency control for applications. At the
same time, studying the fundamental patterns exhibited by
the sEMG when producing different levels of force and
during different phases of activation, including acceleration,
isometric contraction and relaxation, may shed light on the
central nervous system feedback mechanisms that adjust
force and torque.

Numerous features in the time and frequency domains
have been extracted from sEMG for classification purposes,
including amplitude variance, auto-regressive coefficients,
median frequency and mean power, to name a few [4]. While,
in order to capture the time-frequency characteristics, fea-
tures have been extracted by wavelet transform and discrete
dyadic wavelet transform to achieve accurate recognition [5].
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However, a number of factors, such as electrodes placement,
can provide uncertainty in sEMG signal collection [6].
Hence, the accuracy of movement identification from sEMG
varies across subjects and trials [7]. Thus, the identification
of robust features that are minimally entangled with the
above factors is desirable.

In this study, we investigated the sEMG data collected
from the upper limbs of twelve healthy subjects performing
a grasp-and-lift task [8]. Over seven thousand features were
extracted from the data, and the features most relevant to the
weight of the object were selected using mutual information
based algorithms. The selected sEMG features were then
used to identify the weight of the object lifted by the
individual. Results show it is possible to accurately classify
the weight of the objects and that common features can be
identified across subjects.

II. DATA AND METHODS

A. The Open-Source sEMG Data

The sEMG data set used in this study is part of the
WAY-EEG-GAL database designed to characterize grasp-
and-lift tasks [8]. In brief data was collected from twelve
right-handed subjects in each trial, the subject was asked
to reach for a small object with varying weight (165g,
330g, 660g) and varying surface (silk, suede and sandpaper),
grasp it using thumb and index finger, and lift it a few
centimeters up in the air, hold it stably for a couple of
seconds, and then release the object. From the trials where
the object surface was sandpaper, we evaluated the sEMG
signals recorded from 5 channels located at the anterior
deltoid (DA), brachioradial (BRD), flexor digitorum (FD),
common extensor digitorum (CED), and the first dorsal
interosseous (FDI) muscles. sEMG data was downsampled
to 1kHz before analysis and based on the provided event
times we investigated the difference in force related features
during the holding and lifting stages described below.

1) Holding Stage: One second of steady-holding was
extracted from each trial. During each trial the subject was
given an LED cue as to when to begin task and when to
release the object. The holding stage time period refers to
the last second before the subject was given the signal to
release. For each subject, 220 trials were extracted regardless
of testing series (weight-varying only, friction-varying only
and hybrid series).

2) Lifting Stage: As the subjects lifted the objects at
different speeds the duration of the lifting stage varies. For
each subject, the time taken from both digits first touching
the object to the load force reaching its maximum was



recorded for each of the same 220 trials as in holding stages.
Based on the distribution of these times, the 75th quantile
length was fixed as the lifting stage length.

B. Feature Calculation and Normalization

The time-series analysis framework proposed in [9] was
used to find possible indicators for the classification of object
weight. This framework provides more than one thousand
algorithms for univariate time-series analysis spanning a
large variety of time-series properties. These properties sum-
marize features of the time-series such as autocorrelation,
stationarity, power spectra, information theoretic quantities
and many others. Each algorithm, together with predefined
parameters, was used to map each sEMG segment to a
numerical value. For each segment of the individual sEMG
channels, 7778 features were computed. Excluding inappli-
cable features for each trial, combining all 5 channels, more
than 35000 operation values were obtained. To allow the
comparison of different operations, the feature values were
normalized using z-scoring within a single subject.

C. Feature Selection

Each grasp-and-lift trial was labeled according to the load
weight (165g, 330g, 660g). For each subject, there were 220
grasp-and-lift trials, with uneven distribution of load weight
(mostly 330g), which were combined to form a matrix of
operation values. Two feature selection algorithms were then
applied to these operation matrices in order to select the
features most relevant to the weight labels. The algorithms
chosen for this feature selection problem were both mutual
information based algorithms. The Parzen window feature se-
lection (PWFS) [10], concentrates purely on maximizing the
mutual information, so can present overfitting within small
feature sets. The minimum redundancy maximum relevance
(mRMR) feature selection [11] also takes the redundancy
within a feature subset into consideration. Combining these
two algorithms yields a more stable feature subset. In order to
identify possible common features across subjects, 55 trials
were drawn randomly from each subject to form an inter-
subject model. The same procedure was applied to this inter-
subject study.

D. Classification

To deal with imbalanced class distribution (with approx-
imate proportion of 1.23:1.63:1), a 3-class class-weighted
linear Support Vector Machine (SVM) classifier with a 10-
fold cross validation was chosen to classify load weight
based on the first 10 selected features for individual study
or the first 20 for common features. We compared the
classification accuracies for the object weights using different
sets of top selected features.

III. RESULTS

A. Classification Accuracy

Figure 1 shows the classification accuracies for all 12
subjects for both the holding and lifting stages with increas-
ing size of feature set. For all subjects, within 10 features,

the classification accuracy reached its maximum after which
overfitting occurred. Table 1 summarizes the highest multi-
feature classification accuracy (across both algorithms) and
the corresponding size of feature set, for both individual
subjects and also for the combined data, for each of the
stages. Although the two algorithms extracted different fea-
ture sets they yielded similar classification accuracies for a
single subject. For the common features selected from all
subjects the highest classification accuracy was determined
for a maximum feature set size of 20. For the holding
stage the inter-subject classification accuracy (68.66%) was
lower than that of any single-subject accuracy, while in the
lifting stage it exceeded only subject 7’s accuracy (62.02% vs
60.26%). As the dynamic range of feature values differed in
each individual, a subject-tailored model outperformed this
universal model.

TABLE I
CLASSIFICATION ACCURACY FOR LIFTING AND HOLDING STAGES

Lifting Stage Holding Stage

Subject Accuracy
(%)

No. of
Features

Accuracy
(%)

No. of
Features

1 88.43 9 74.57 6
2 74.93 4 98.04 4
3 92.54 5 72.63 5
4 87.84 3 88.34 9
5 79.57 2 88.50 7
6 82.19 6 94.48 4
7 60.26 6 86.78 4
8 90.99 8 82.23 4
9 86.39 4 95.05 10

10 87.10 3 96.02 3
11 66.84 6 88.32 3
12 91.14 6 98.34 4

Mean 82.35 88.61
Standard Deviation 10.24 8.59

Model with
Common Features 62.02 5 68.66 13

B. Key Features

Table 2 presents a summary of the features and corre-
sponding muscle channels which individually provide the
greatest classification accuracy. As both feature selection
algorithms have the same initial step, maximizing the mutual
information to the class labels, they therefore select the same
first feature. For both the lifting and holding stages, the first
selected features for each subject, were primarily taken from
the brachioradialis. This result implies that during a grasp-
and-lift task, more information is gained from the brachiora-
dialis sEMG when compared to the sEMG obtained from
the other related muscles. For the single-subject features,
entropy, mean/median absolute deviation and pNNx measure
all frequently appeared across subjects. The top inter-subject
feature selected for both lifting and holding stages was again
entropy, which implied feature-universality across subjects.

1) Entropy: Entropy has been used to quantify signal un-
predictability in clinical applications [12]. For a continuous



(a) Lifting Stage

(b) Holding Stage

Fig. 1. Classification accuracies of 12 subjects in (a) lifting stage and (b) holding stage. Solid circle and square stands for the highest classification accuracies
in both feature selection algorithms. PWFS: Parzen window feature selection. mRMR: minimum-redundancy-maximum-relevance feature selection.

random variable X, with probability density function f(x),
the entropy H(X) is defined as follows:

H(X) = −
∫
X

f(x) log f(x)dx (1)

However, for a segment of time series with limited sam-
ple points, we cannot derive an exact probability density
function. Hence, kernel smoothing was used to estimate
the probability density function [13]. This estimation, f̂ ,
is based on a normal kernel function, and is evaluated
at 100 equally-spaced points xi, that cover the range of
the sampled data. The entropy was then computed, with a
staircase approximation:

H(X) = −
100∑
i=1

f̂(xi) log(f̂(xi)× (xi+1 − xi))) (2)

Other entropy-based measures of sEMG irregularity such as
sample entropy and fuzzy approximate entropy have been
shown to correlate with the number of motor units recruited
in human upper limbs [14]. However, for the first time,
our results reveal that entropy performs better in terms of
characterizing the muscle activities in force manipulations
than other such complexity based measures.

2) Mean/Median Absolute Deviation: Mean absolute de-
viation for a N-points time series is computed as follows:

MAD =
1

N

N∑
i=1

|xi − x̄| (3)

and median absolute deviation takes the median value of
|xi − x̄|. Both the mean and median absolute deviations
provide measures of the dispersion of the data. Similar



TABLE II
TOP FEATURE SELECTED IN LIFTING AND HOLDING STAGES AND THE CORRESPONDING CLASSIFICATION ACCURACY USING THIS SINGLE FEATURE

Lifting Stage Holding Stage

Subject (Muscle) Name of the Top Feature Accuracy (%) (Muscle) Name of the Top Feature Accuracy (%)

1 (BRD) pNN30 78.44 (FDI) Autoregressive Model (Covariance) 54.26
2 (FDI) Interquartile Range 58.05 (FDI) Entropy 93.07
3 (BRD) Entropy 85.71 (BRD) Median Absolute Deviation 69.34
4 (BRD) Entropy 85.05 (BRD) Entropy 82.06
5 (BRD) pNN20 74.41 (BRD) Entropy 84.10
6 (BRD) Mean Absolute Deviation 74.44 (BRD) Mean Absolute Deviation 90.67
7 (BRD) Mean Absolute Deviation 42.17 (BRD) pNN20 83.02
8 (BRD) Entropy 82.70 (BRD) Entropy 67.26
9 (BRD) Interquartile Range 82.03 (BRD) Heart Rate Variability Measure 92.35
10 (BRD) pNN20 76.71 (BRD) Entropy 89.33
11 (BRD) Mean Absolute Deviation 60.45 (BRD) Heart Rate Variability Measure 81.52
12 (FDI) Compare Kernel Smoothings Fitness 74.62 (BRD) Entropy 84.50

Model with
Common Feature (BRD) Entropy 54.82 (BRD) Entropy 55.91

Each feature was labeled according to the sEMG channel. Format: (Muscle)Feature. Muscle acronyms {BRD: Brachioradialis. FDI:
First Dorsal Interosseous.}

measures of sEMG dispersion, such as variance, have been
extensively used in sEMG analysis [4].

3) pNNx Measure: The pNNx family of measures was
originally proposed to examine cycle length variability in
the time domain [15]. Here x is a threshold to indicate the
irregularity and this parameter usually ranges from 10 to 100.
When dealing with a N-points time series y, the pNNx value
is computed as follows:

zi = (yi+1 − yi)× 1000, i = 1, . . . , N − 1

pNNx =
Number of zi > x

N − 1
(4)

The sequence zi represents the amplitude change under a
certain sampling frequency. The pNNx measure evaluates
the fraction of positive changes that are above different
thresholds x.

IV. CONCLUSION

In this study we effectively classified the object weight
in a grasp-and-lift task with less than ten sEMG features.
Using two mutual-information based feature selection meth-
ods subject-tailored feature vectors were obtained from 7778
features. On average, we achieved 82.35 ± 10.24% and
88.61 ± 8.59% (Mean±Standard Deviation) classification
accuracy during acceleration and isometric contraction phase,
respectively. We found that in both phases, some features
common across individuals, in particular entropy, correlate
with the weight of the object being lifted by all individuals.
These features may be able to provide more accurate clin-
ical indicators, such as muscle assessment in rehabilitation
engineering. But the possible physiological relation between
force levels and these features of sEMG requires further
investigation, for instance, simulations of muscle fibers and
muscle structure.
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