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Hand movement classification based on surface electromyography (sEMG) pattern

recognition is a promising approach for upper limb neuroprosthetic control. However,

maintaining day-to-day performance is challenged by the non-stationary nature of sEMG

in real-life operation. In this study, we propose a self-recalibrating classifier that can be

automatically updated to maintain a stable performance over time without the need for

user retraining. Our classifier is based on convolutional neural network (CNN) using short

latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is

recalibrated routinely using a corrected version of the prediction results from recent

testing sessions. Our proposed system was evaluated with the NinaPro database

comprising of hand movement data of 40 intact and 11 amputee subjects. Our system

was able to achieve ∼10.18% (intact, 50 movement types) and ∼2.99% (amputee, 10

movement types) increase in classification accuracy averaged over five testing sessions

with respect to the unrecalibrated classifier. When compared with a support vector

machine (SVM) classifier, our CNN-based system consistently showed higher absolute

performance and larger improvement as well as more efficient training. These results

suggest that the proposed system can be a useful tool to facilitate long-term adoption

of prosthetics for amputees in real-life applications.

Keywords: myoelectric control, non-stationary EMG, classification, hand gesture, pattern recognition,

convolutional neural network

INTRODUCTION

Surface electromyography (sEMG) has become a useful source of control signals for modern
prosthetics due to its ease of use and non-invasiveness (Hargrove et al., 2007; Castellini and van
der Smagt, 2009). Pattern recognition of sEMG has become a promising techniques for controlling
upper limb prosthetics (Scheme and Englehart, 2011). A variety of sEMG features, including
time domain and frequency domain features, have been extensively investigated for movement
classification with various degrees of success (Hudgins et al., 1993; Zardoshti-Kermani et al., 1995;
Phinyomark et al., 2012). Choice of optimal classifiers has also been extensively researched in the
past decade, with support vector machines (SVM; Ameri et al., 2014) and linear discriminant
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analysis (LDA, Chu et al., 2007; Linderman et al., 2009;
Phinyomark et al., 2013) having emerged as the common choice
for sEMG-based movement classification.

However, sEMG is non-stationary and sensitive to many
factors, such as electrode placement, signal crosstalk and
recording environment (Scheme and Englehart, 2011). Variation
in sEMG can be significant even on a day-by-day basis for
the same subject. Hence, performance of the classifiers, and
thus the prosthetics, would degrade if they are not recalibrated.
This degradation may be minor in a well-controlled laboratory
setting but could become a serious problem in real-life clinical
applications. This discourages long-term use of neuroprosthetics
in amputees. Supervised recalibration of the classifier by asking
the user to repeat a strict training protocol daily is possible but
would become inconvenient when the number of movement
types become large. With even a few minutes of active retraining
every day it would become a burden to the user. Alternatively,
a self-recalibrating classifier is an adaptive system which can
adapt using only the estimated user’s intent is desirable since it
eliminates the burden of such retraining procedures. A number
of adaptive approaches have been applied to enhance robustness
of sEMG classifiers (Sensinger et al., 2009; Scheme and Englehart,
2011; Chen et al., 2013; Amsuss et al., 2014; Liu et al., 2016b;
Vidovic et al., 2016). Sensinger et al. (2009) proposed several
adaptive approaches to expand the training dataset by including
some of the online data together with their predictions. These
additional data needs to be carefully selected or the performance
of the classifier could in fact degrade. It remains an open question
for getting the best adaptive paradigm to achieve this. Amsuss
et al. (2014) took a post-processing approach to modify the
decisions of the LDA classifier by an artificial neural network
(ANN) to improve the accuracy by taking into account the
history of predictions. However, the classifier system remains
unchanged throughout and no new information about changes
of sEMG patterns was incorporated. On the other hand, work
in (Chen et al., 2013; Liu et al., 2016a; Vidovic et al., 2016)
used an adapting LDA approach to compensate for the non-
stationarity in sEMG. The pre-trained classifier(s) was adapted
using either a new short labeled dataset collected daily (Liu
et al., 2016a; Vidovic et al., 2016) or the prediction results
directly from the previous sessions (Chen et al., 2013). They
demonstrated improved accuracy over a non-adapting classifier
but they required daily training to obtain the new labeled data or
they used the prediction results directly which may include data
that was incorrectly classified. In this study, we aim to develop
an adaptive classification system that can compensate for highly
non-stationary sEMG without daily retraining.

Convolutional neural network (CNN), proposed by
LeCun et al. (1998), has emerged as one of the most powerful
machine learning approaches in recent years. The neural network
called LeNet-5 was first introduced to classify handwritten and
machine-printed characters. Furthermore, implementing CNN
using graphics processing unit (GPU)makes it a powerful pattern
recognition tool with high efficiency by taking advantages of
its parallel computing capability. CNN has demonstrated great
success in the areas of image recognition (Krizhevsky et al.,
2012), audio classification (Hinton et al., 2012a) and semantic

identification (Shelhamer et al., 2017). Recent studies have
also shown successful of application of CNNs in the area of
biomedical engineering, such as animal behavior classification
(Stern et al., 2015), histopathological diagnosis (Litjens et al.,
2016), and protein structure prediction (Wang et al., 2016). In
this study, we believe that CNN can be a powerful tool in the
field of EMG-based hand movement classification as well.

In this paper, we first proposed a CNN based classifier
for short latency hand movement classification using sEMG
spectrogram as feature. The spectrogram as an input feature
was chosen based on our previous work which has shown
that when using SVM to classify sEMG the spectrogram
feature outperforms that of the previously best feature set
(Zhai et al., 2016). Next, we investigated a self-recalibrating
CNN classification system which is routinely fine-tuned using
prediction results from recent testing session after processed
through a label correction mechanism. Testing of our method
was performed on the publicly accessible NinaPro database.
To validate our results we compared the performance of the
proposed classifier with SVM which has been shown to achieve
the top performance on the NinaPro database (Atzori et al., 2014;
Zhai et al., 2016).

MATERIALS AND METHODS

The database of the NinaPro project (Atzori et al., 2014) was
used in this study. It is a publicly accessible database which has
previously been used for research studies on hand movement
recognition and decoding (Krasoulis et al., 2015; AbdelMaseeh
et al., 2016). The NinaPro Database2 (DB2) contains sEMG
data recordings from 40 intact subjects. Each subject is required
to perform 49 types of hand movement including 8 isometric
and isotonic hand configurations; 9 basic wrist movements; 23
grasping and functional movements and 9 force patterns. Each
movement was repeated 6 times with a 3 s rest in between. The
12-channel sEMG signal was sampled at 2,000 Hz and filtered
with a Hampel filter to remove 50 Hz power line interference.
NinaPro Database 3 (DB3) comprises data of 11 trans-radial
amputated subjects with disabilities of the arm, shoulder and
hand (DASH) scores ranging from 1.67 to 86.67 (scale 0–100)
performing the same 50 hand movements as the intact subjects.

We also tested the classifiers with a smaller number of
movement types which could more realistically be implemented
on real-world prosthetics. Li et al. (2010) listed 10 types of hand
movement which are commonly used in daily life, including
wrist flexion and extension, wrist pronation and supination, hand
open, and 5 hand-grasp patterns including chuck grip, key grip,
power grip, fine pinch grip, and tool grip. We repeated similar
testing with these 10 movement types in this study.

Figure 1A shows the workflow of the classification scheme in
this study. Details of these steps are described in the subsequent
sections.

Data Preprocessing
sEMG signals are sectioned into 200 ms (400 samples) segments
with 100 ms (200 samples) increments. Delay less than 300 ms
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FIGURE 1 | Schematic of the proposed CNN classification. (A) sEMG is segmented and spectrogram of each segment is calculated and normalized. Then principal

component analysis (PCA) is performed to reduce the dimensionality of the spectrograms before passing them into the CNN classifier. The CNN model contains one

convolutional layer (Conv Layer), two full connection layers (FC Layer) with dropout and a softmax loss layer. The network is trained using backpropagation in

conjunction with the gradient descent method. (B) PCs of sEMG spectrogram are reshaped into a 2D matrix and rearranged in a way such that the most significant

PC sits at the center of the matrix while the least significant PCs sit at the corner. The numbers indicate the ranking of the PCs. (C) Illustration of the convolutional layer.

A 4 × 4 filter is convolved with the 5 × 5 realigned matrix, and gives a resultant 2 × 2 matrix. (D) Dropout method. In each training echo, 50% of the neurons in each

layer will be randomly picked as dropout neurons and these neurons are ignored in the error propagation and weight update procedures (presented with dashed line).

is considered acceptable for continuous classification in real-
life applications (Englehart and Hudgins, 2003). A prediction of
the movement type is given for each segment with each sEMG
channel processed independently for spectrogram calculation
and normalization.

The spectrogram for each segment of each channel is
computed using a 256-point fast Fourier transform (FFT) with
a Hamming window and 184-point overlap. Thus, each segment
results in a spectrogram calculated at 129 different frequencies
(0–1,000 Hz) with 3 time bins. We kept only the first 95 points in
frequency of the spectrogram (0–736.54 Hz) because the majority
of the sEMG energy was observed within frequency range from 0
to ∼700 Hz (Zhai et al., 2016). Hence, the spectrogram of each
sample segment results in a matrix of 95 × 3 × 12 (frequency
× time bins × channels). The intensity of each spectrogram is
then normalized into 0 to 1. For each channel, the 1st and 99th
percentiles of the spectral intensity are considered the minimum
and maximum value, respectively. Values beyond this range will
be forced to 0 or 1. To improve computational efficiency and
performance, we vectorize the normalized spectrogram matrices
channel by channel and then apply PCA to it. Only the scores
of the first 25 principal components (PCs) of each channel are
used for the classification, hence, a total of 300 PC scores. We
have shown previously that the first 100–500 PCs are sufficient to
achieve good classification accuracy (Zhai et al., 2016). As a result,
each spectrogram matrix is reduced to a dimension of 25 × 12
(PC× channels) after PCA.

Classification
Previous studies have shown that SVM with radial basis function
(RBF) kernel offered the best classification results for DB2 using
sEMG spectrogram as input features (Atzori et al., 2014; Zhai
et al., 2016). Hence, SVM is used to benchmark our CNN-based
system in this study. An open source C++ library LIBSVM
(Chang and Lin, 2011) was used to implement the SVM classifier.
The optimal hyper-parameter pair (c, γ) was obtained with a
four-fold cross validation (Atzori et al., 2012).

Figure 1A shows a schematic for our CNN classifier. Our
CNN model contains 1 convolutional layer (Conv Layer), 2 fully
connected layers (FC Layer) with dropout and a softmax loss
layer. The softmax loss layer computes the cost function using the
normalized exponential function. It also outputs the probabilities
of all movement types considered in the current prediction. Each
layer is trained by backpropagation. An open source MATLAB
toolbox MatConvNet was used to implement the CNN classifier
(Vedaldi and Lenc, 2015).

Before inputting into the CNN, the resultant vectors of PC
scores are first rearranged in to a 2D matrix such that, for each
channel, the 25 × 1 vector becomes a 5 × 5 matrix. In this way,
each of the sEMG segments is treated like a 2D image and the 12
channels mimic the RGB channels in a color image. Furthermore,
to optimize the use of the CNN, the PCs are rearranged in a way
such that the score of the most significant PC sits at the center
of the matrix while the least significant PCs sit at the corners
(Figure 1B). In this way, the major PCs can be captured by most
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of the convolving filters and hence maximize their contribution
in the network. This rearrangement can provide an additional
1–2% improvement in overall accuracy. Figure 1C shows the
forward projection of the convolutional layer using a 4× 4 filter.

In the FC layers we use rectified linear units (ReLU) as
activation function which has been shown to help avoid problem
of vanishing gradient (Glorot et al., 2011), and hence effectively
speed up training. We also apply dropout method to reduce
overfitting (Hinton et al., 2012b). In each training echo, 50%
of the neurons in the fully connected layers will be randomly
dropped from error propagation and weight update (Figure 1D).
Randomly selecting the dropout neurons in this manner should
reduce the chances of coadaptation of the parameters and hence,
decrease the interdependence of neurons which can lead to
overfitting.

Self-Recalibration
Self-recalibration of the classifier is critical for real-life prosthetic
application due to the day-to-day (and even session-to-session)
variability of sEMG. In order to simulate this scenario, the first
set of the six repetitions of movements in DB2 and DB3 was
selected as the initial training set, while the other five repetitions
were tested one by one with the classifiers. The prediction results
from previous session are fed back to retrain the classifiers prior
to each testing session (Figure 2). To improve performance, the
predicted labels are first corrected offline using a multi-vote
method. The assumption is that neighboring sEMG segments
are likely belonging to the same hand movement type. A similar
assumption was used in developing a self-correcting classifier
(Amsuss et al., 2014).

Assume Li denotes the predicted label of the ith segment from
the previous testing session. This label can then be updated based
on the label which occurs the most often in the segments in the
adjacent±x segments.

Li ← mode(Li−x, Li−x+1, · · · , Li, · · · , Li+x ) (1)

where x will be picked to optimize the accuracy of the relabeling.
For the CNN, we can also consider an alternative label update

to Li based on the median probability. Let P(i, j) denotes the
predicted probability of the jth movement class for ith segment.
For each j, we compute the median probability, P̃

(

i, j
)

, over the

adjacent±x segments,

P̃
(

i, j
)

= median(P
(

i− x, j
)

, P
(

i− x+ 1, j
)

, . . . ,

P
(

i, j
)

, . . . , P(i+ x, j)) (2)

Then we find jwith themaximum P̃
(

i, j
)

and use it as the updated
label for segment i,

Li ← argmax
j

(

P̃
(

i, j
))

(3)

The median, instead of mean, is used here to minimize the effects
of outliers. This updated data is then used to retrain the classifiers.

In the self-recalibrating classifier, the most recent session was
fed back to update the classifier. In fact, the amount of feedback
data can be flexibly chosen based on performance, computational
load, and gestures of interest. We also considered the extreme
when results from all previous sessions were kept to update the
classifier. The three scenarios to be compared are as follow.

i. No recalibration: The classifier is only trained once using the
initial training data set.

ii. All-Session recalibration: The classifier is retrained using
the initial training data set plus the prediction results from
all the previous testing sessions. This serves as an estimate
for maximum expected performance but the continuous
accumulation of the data in long run is impractical for
real-life application.

iii. Last-Only recalibration: The classifier is retrained using only
the prediction from the most recent testing session.

Performance Evaluation and Statistical
Analysis
The classification accuracy was calculated in a class-specific
manner. The accuracy, Acci, for subject i is calculated as,

Acci =
1

M

M
∑

j=1

[

# correct segments

#total segments

]

j

(4)

where M is the total number of movement types. The class-
specific accuracy is suggested to be a preferred metric over global
accuracy for quantifying the performance of the classifier (Ortiz-
Catalan et al., 2015). In fact, we have also balanced the number

FIGURE 2 | Block diagram of the proposed self-recalibration classifier. Retraining of classifier is executed whenever the buffer has been filled up with the PC score

and updated label. The size of the buffer can be flexibly designed to balance performance and computational load as well as for gestures of interests. The retraining

follows the same mechanism as shown in Figure 1A.
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of trials for all the movement types (including rest) in this study
which minimizes the bias in calculating the accuracy.

All pairwise comparisons were based on one-way ANOVA
with repeated measures followed by Bonferroni post-hoc analysis.
Significant level was set at p < 0.05. Unless specified
otherwise, all results are presented as mean ± 1 standard
error.

RESULTS

Evaluation of CNN Structure and
Recalibration Mechanism
To optimize the design of the classifier system, we performed
a series of simulations using two third of the movement
repetitions, same as the NinaPro paper (Atzori et al., 2014),
to train the classifiers with data from the first 10 subjects
of DB2. While it is difficult to obtain a globally optimal
network structure, these results provide some guidance to
select a good network design that balance between performance
and computational cost. First, we consider the effects of
the convolutional layer and dropout layers of the CNN
classifier (Figures 1B–D show the major components of the
CNN classifier). Figure 3A shows a comparison of the overall
accuracies of the complete CNN classifier and compromised
versions without the convolutional and/or the dropout layers.
In the models without the convolutional layer, the layer
was replaced by a fully connected layer and hence the total
number of layers conserved. For the model without neither the
convolutional layer nor the dropout layers, it essentially becomes
a traditional ANN. The convolutional layer and the dropout
together contributed a 2.5% improvement in classification
accuracy.

Next we tested the performance of the CNN classifier with
different numbers of neurons in the hidden layers. Here we
use the same number of neurons in each layer. Having a
larger number of neurons improved the performance with the
average classification accuracy peaking at around 800 neurons
(Figure 3B). Increasing the number of neurons to 1,200 added
little or no improvement to the classifier but resulted in a
large increase in computational time. In our implementation,

the difference in computational cost and accuracy is very small
between 400 and 800 neurons. We have used 800 neurons in our
network for the rest of the study.

Finally, we evaluated the optimal windows size for the
label updating mechanisms as described by Equations
1–3. We recomputed the label accuracy after update using
different numbers of segments. Figure 4 shows that the
accuracy of the updated labels can be increased by as
much as ∼15% when compared with the ground truth.
For both our proposed self-recalibrating CNN classifier
and SVM, we used a window of ±10 segments to update
the predicted labels which gives a good balance between
performance and latency in dealing with the NinaPro database.
Figure 4 also shows that label update based on the median
probability (Equations 2 and 3) is preferred for our CNN
classifier.

Performance of Baseline Classifiers
We first tested a “baseline” version of the classifiers. The baseline
classifiers were trained in exactly the same way as in the NinaPro
study (Atzori et al., 2014). For each movement type, the 1st, 3rd,
4th, and 6th repetitions were used as the training set, while the
other two repetitions were used as the testing set. The overall
accuracies averaged over all subjects and all movement types, are
summarized in Table 1 and Supplementary Table S1. The average
accuracy of SVM on all movement types is 77.44%, which is
higher than the best results (75.27%) reported in the NinaPro
study using Random Forests with a combination of four features
(Atzori et al., 2014). The accuracy of the proposed CNN classifier
is slightly higher than that of SVM (1.13%). The confusion
matrix from the CNN classifier shows that the majority of error
was due to misclassifications into movements of the same class
(Supplementary Figure S1). The small improvement of CNN over
SVM was also observed in testings with intact subjects on the 10
movement subset (88.42% vs. 87.86%) and with amputee subjects
(73.31% vs. 72.01%). The improvement was consistent for all
subjects tested (Supplementary Figures S2, S3). (Amputee Subject
7 had a very low classification accuracy (<18%) in all testing for
both classifiers, probably because his entire forearm has been lost.
Hence, Subject 7 was eliminated from all of our analysis.).

FIGURE 3 | Analysis of CNN structure. (A) Effects of convolutional layer and dropout method. Compared to the model with no convolutional layer nor dropout layer

(i.e., a standard ANN), incorporating the convolutional layer or the dropout resulted in a rise in classification accuracy of 1.4% and 0.9%, respectively. Furthermore, the

complete CNN classifier offered a 2.5% improvement than the standard ANN. All pairwise comparisons are statistically significant. (B) Average accuracy (blue line) and

training time (gray bars) of the first 10 subjects with different number of neurons in CNN hidden layers. Same number of neurons are used in each hidden layer.
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FIGURE 4 | Effects of number of segments used for label updating (Equations 1–3). The data in the first repetition was used to train the classifiers, and was tested

with the second repetition. Accuracy was calculated by comparing the updated labels against the ground truth for the first 10 subjects.

TABLE 1 | Summary of classification accuracy for baseline classifiers.

SVM% CNN%

Intact subjects (n = 40)

All movement 77.44 78.71

Basic movement (index 2 to 18) 81.07 82.22

Grasping and functional

movement (index 19 to 41)

71.08 72.62

Force pattern (index 42 to 50) 88.56 89.54

Intact subjects (n = 40)

10 Movement subset 87.86 88.42

Amputees (n = 10)

72.01 73.31

Although the difference in classification accuracy is small,
computation with CNN could be quite efficient despite the
complexity. We implemented the CNN classifier on NVIDIA
CUDA R© Deep Neural Network library (cuDNN; Chetlur et al.,
2014) to be trained on a NVIDIAGTX 980MGPU. It took 19.83 s
to train the CNN for one subject on 10 movement subsets and
66.34 s on all 50movement types (Figure 5). The training of CNN
is sufficiently fast to allow recalibration online to compensate
for variation in sEMG signals. The results also show that CNN
can scale quite efficiently when dealing with more movement
types. We also tested SVM using four cores parallel computing
with CPU (Intel i5-6600 with 16GB DDR4 RAM). The scalability
appeared to be worse for SVM (Supplementary Figure S4,
23.71 s for 10 movement types vs. 561.62 s for 50 movement
types). Further optimization for SVM implementation may
resolve this issue but few recent works have found available
for GPU acceleration of SVM (e.g., Athanasopoulos et al.,
2011).

FIGURE 5 | Average training time of CNN for one subject. The CNN model

was implemented with NVIDIA CUDA® Deep Neural Network library (cuDNN)

to be run on a Nvidia GTX 980M GPU.

Performance of Self-Recalibrating
Classifiers
We then investigate a self-recalibrating system based on these
two classifiers. We would like to emphasize that after the initial
training, no new data with true labels were provided to the
classifiers. Instead, the classifiers were retrained based on only the
predictions from previous sessions.

Intact Subjects (DB2)
The session-to-session performance of both our CNN classifier
and SVM for intact subjects are shown in Figure 6A. For
each simulation, only the first repetition was used as training
data. The first testing session was then performed on repetition
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FIGURE 6 | Comparison of CNN and SVM in intact subjects (n = 40) tested with all movement types. (A) Average session-to-session accuracy in different

self-recalibration scenario. Repetition 1 of movement was used as the training data, and repetitions 2 to 6 were tested one by one with or without recalibration.

(B) Statistical analysis of session-to-session performance. We compare session-to-session difference among the three scenarios, as well as between CNN and SVM.

* Indicates pairwise statistically significant difference (p < 0.05).

2 (Session I), after which the predicted labels were updated
according to Equations 1–3 and the classifiers recalibrated using
these updated labels. The same procedure was then repeated for
repetitions 3, 4, 5, and then 6 (Session II to V). Each recalibration
took 21.78 s for CNN when considering all 50 movement types
(5 s each). When no recalibration was performed, the accuracies
of both classifiers droppedmonotonically session by session. This
reflects a pretty rapid drift in sEMG pattern from repetition to
repetition in the NinaPro dataset such that at the fifth testing
session, a significant drop in performance has been accumulated
for both CNN (18.66%) and SVM (19.19%), although CNN
consistently offered higher accuracy than SVM for all testing
sessions. This drop in performance is not due to specific choice
of sEMG features per-se. We have tested a number of commonly
used sEMG features on the classifier (e.g., RMS, Autoregressive
Coefficient, Mean Frequency, Median Frequency, Frequency
Ratio, Peak Frequency) and a similar drop in performance with
even lower accuracies was observed in all of them (data not
shown).

All-Session recalibration offers large improvement in
performance and robustness for both classifiers, which gives an
estimate of maximum improvement we could expect from such
self-recalibrating system. The accuracy dropped by only 2.63%
for CNN and 4.33% for SVM by the fifth testing session, which
corresponds to an average of 12.08% and 11.11% improvement
from the unrecalibrated classifiers, respectively (Figure 6A). Not
only that CNN offers a larger improvement, the absolute average
accuracy of CNN is also higher than that of SVM (Figure 6B).

Last-Only recalibration method, which is more practical for

real life application, offers comparable improvement for the CNN

classifier to the All-session recalibration approaches, but much
smaller improvement for SVM (10.18% for CNN vs. 4.20% for
SVM averaged over 5 testing sessions) (Figure 6 and Table 2).
Furthermore, Figure 7 shows the difference in classification
accuracy between All-Session and Last-Only recalibration for
each subject. The difference is only 1.68% (median) for CNN
while that for SVM is 6.92%. The trend is consistent for each of
the 40 subjects tested.

TABLE 2 | Difference in classification accuracy of the self-recalibrating systems

from the No-recalibrating case.

Session Session Session Session

II III IV V Average

Intact—All Movement

(Figure 6)

CNN 6.41% 9.95% 11.47% 12.88% 10.18%

SVM 2.94% 4.68% 4.58% 4.59% 4.20%

Intact—10 Movement

(Supplementary Figure S6)

CNN 3.33% 6.80% 7.84% 9.92% 6.97%

SVM 2.11% 3.56% 3.58% 3.45% 3.18%

Amputee—10 Movement

(Figure 8)

CNN 2.37% 3.52% 3.31% 2.76% 2.99%

SVM 1.33% −1.13% −3.29% −2.86% −1.49%

Positive value indicates higher accuracy than the No-recalibrating case.

While the absolute accuracies appear relatively low in the
results shown above, we would like to emphasize that we have
only used a single repetition as the initial training set. By
using the first 3 repetitions for initial training, the absolute
performance can be readily improved by ∼10% for all testing
sessions (Supplementary Figure S5). It also shows that with
Last-Only recalibration, the performance of SVM was even
worse than the case with no recalibration at all, suggesting
that the SVM-based system is more sensitive to variation of
the data over different sessions. Data with more repetitions
as training set should further improve the performance,
but it would also increase the burden of sEMG collection.
Further studies could identify the appropriate balance between
these two.

Testing on 10 movement subset showed higher overall
accuracy (by ∼13%) with similar trend as in testings with all
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FIGURE 7 | Difference in classification accuracy between All-Session and Last-Only recalibration for each intact subject tested with all movement types. Each point

represents the average difference over sessions II to V. The median difference for CNN and SVM is 1.68% and 6.92% respectively.

movement types (Supplementary Figure S6), with an average
improvement in accuracy of 6.97% and 3.18% for CNN and
SVM, respectively (Table 2). Despite a smaller difference in
performance, Last-Only recalibration of CNN is still much better
than that of SVM.

Amputee Subjects (DB3)
We have also tested the recalibrating performance of our
CNN classifier on the amputee subjects in NinaPro Database
3. We tested the performance only on amputee subjects with
experience in myoelectric prostheses (4–13 years). For testing
on 10 movement subset, a similar trend as in intact subjects is
observed although the accuracy is generally lower (Figure 8A).
The recalibrated CNN classifiers generally perform better than
unrecalibrated ones (+2.99% on average, Table 2), although
statistical significance is weaker in amputees, primarily due
to larger variability in these subjects and smaller sample size
(Figure 8B). It is worth noting that the average performance
of Last-Only recalibrated SVM is even lower than the
unrecalibrated SVM (−1.49% on average, Table 2) suggesting
that SVM is more sensitive to nature of the data over different
sessions. We have also repeated the simulations on all amputee
subjects and amputee subjects with remaining forearm >70%
and similar trends could be seen for these cases (Supplementary
Figure S7). Testing of amputee subjects on all movement types
is unrealistic particularly when data from a single repetition
is used for initial training. Despite a similar trend as in
other testings, this resulted in a low accuracy in first testing
session (∼40%) which would not be useful for any meaningful
recalibration.

DISCUSSION

We have proposed a CNN-based framework for hand movement
classification based on dimension-reduced sEMG spectrograms.
By combining a CNN classifier with a simple label updating
mechanism, the classifier provides an effective self-recalibration
capability to maintain a robust session-to-session performance
for both intact and amputee subjects. In our simulations, we
showed that the self-recalibrating CNN classifier can offer
an average of 10.18% increase in accuracy when compared
to the unrecalibrated classifier, while the SVM-based system
showed only 4.20% increase in accuracy. The label correction
mechanism has been effective in maximize the use of the
prediction data such that the performance could be maintained
even though the accuracy only started at 61.7% (Figure 6).
All subjects showed improved performance with recalibrated
CNN but several subjects showed poorer performance using
Last-Only recalibrated SVM. These results support that our
CNN framework could be a useful tool to compensate for
continuous drift in sEMG signals without routine retraining. To
adopt this self-recalibrating system for day-to-day application
of neuroprosthetics, the classifier could be updated in the
background with the same mechanism for a suitable time
interval (e.g., every 1 h as one session) without the need of
active retraining by the user. Future study will investigate the
performance of our proposed system for long-term use.

The convolutional and the dropout layer of CNN provide
certain degree of regularization and the use of ReLU activation
function also helps speed up training and avoid the need for pre-
training. It is also intuitive to incorporate new data to update
the neural network that partially retains the memory of the
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FIGURE 8 | Comparison of CNN and SVM in amputee subjects with myoelectric prostheses experience (n = 5) tested with 10 movement subset. (A) Average

session-to-session accuracy in different self-recalibration scenario. Repetition 1 of movement was used as the training data, and repetitions 2 to 6 were tested one by

one with or without recalibration. (B) Statistical analysis of session-to-session performance. We compare session-to-session difference among the three scenarios, as

well as between CNN and SVM. * indicates pairwise statistically significant difference (p < 0.05).

information from previous data and provides a desirable initial
condition for fine-tuning the network using new testing data.
The popularity of CNN and other deep learning frameworks in
image processing, speech recognition and so on have led to more
efficient computational tools which have essentially improved
the speed of the training process and eased the complication
of implementation. For instance, we have used the NVIDIA
CUDA R© Deep Neural Network library (cuDNN; Chetlur et al.,
2014) to speed up training of our CNN classifier. Our CNN
classifier can be effectively parallelized with GPU such that the
training speed was faster than SVM. In fact, the overhead of
incorporating more movement types is much less on CNN than
SVM (Figure 5 and Supplementary Figure S4). These advantages
make the CNN a more flexible platform for controlling more
powerful neuroprosthetics.

Two recent paper have also adopted CNN for sEMG hand
movement classification. Atzori et al. (2016) applied a CNN
classifier on the NinaPro dataset, which reached an average
accuracy of 60.27% on DB2 taking a total training time of 1 h and
42min. However, the performance was lower than that of the best
classical classificationmethods (RandomForests with all features,
75.27% (Atzori et al., 2014). In this paper, we have showed that
our design offers a much higher performance (78.71%, Table 1)
and faster training time (∼44 min for 40 subjects) even on a
less powerful GPU (NVIDIA GTX 980M vs. NVIDIA Titan-
X GPU). Geng et al. (2016) employed an image-classification
framework with CNN to show that instantaneous sEMG signal
obtained from high density sEMG recording (128 channels) can
be a useful feature for hand movement classification. The idea
of instantaneous sEMG image is attractive for neuroprosthetic
application with minimum delay but it will also require more
resources to handle the high density inputs. The advantage of
low latency was not enjoyed by the low density NinaPro dataset
because the classification accuracy for all 52 movement types on
DB1 using a short 10 ms windows was only ∼65% as shown in
their work. The higher computational load will be a drawback on
a recalibrating system as addressed in this study.

We used SVM as the benchmarking classifier in our study
since it previously offered the best performance for NinaPro

database using the sEMG spectrogram (Zhai et al., 2016). On
the other hand, a number of recent studies on self-recalibrating
hand movement classifiers have been based on LDA (Chen et al.,
2013; Amsuss et al., 2014; Vidovic et al., 2016), which is a
simple and easy to implement algorithm. However, performance
of LDA on the NinaPro database has been shown to be lower
than other competing classifiers (Atzori et al., 2014) and hence
it was not used in our study (our preliminary testings showed
that performance of LDA was ∼10% lower than SVM and
CNN). This may be because the number of movement types
is large and the sEMG properties drift quickly from session to
session in this database, which make it difficult to estimate the
probability distributions for each class reliably and hence fuzzy
linear boundaries. Nevertheless, publicly accessible databases
like NinaPro are still a valuable resource which allow direct
comparison of different algorithms.

Several aspects of performance evaluation could be
more thoroughly investigated in future studies. First, online
experiment will be required to fully validate our self-recalibrating
system as offline and online performance may not always
correlate. In this study, we have performed the self-recalibration
testing according to the sequence as the subject performing
movement during the experiment. This has preserved the
temporal profile of sEMG to some extend which mimics an
online experiment. We have also used class-specific accuracy
which is suggested to be a less biased metric for performance
evaluation (Ortiz-Catalan et al., 2015). As such, we believe
that our offline analysis is still a valid reference for online
performance. Second, during real-life conditions people rarely
hold sustained constant force contractions as are presented in the
NinaPro database. Hence, a more extensive dataset over multiple
days with more realistic movement will grant more thorough
evaluation of our system in terms of both design of the network
and the recalibration mechanism.
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