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Directionality indices can be used as an indicator of the asymmetry in coupling between systems
and have found particular application in relation to neurological systems. The directionality index
between two systems is a function of measures of information transfer in both directions. Here
we illustrate that before inferring the directionality of coupling it is first necessary to consider
the use of appropriate tests of significance. We propose a surrogate corrected directionality index
which incorporates such testing. We also highlight the differences between testing the significance
of the directionality index itself versus testing the individual measures of information transfer in
each direction. To validate the approach we compared two different methods of estimating coupling,
both of which have previously been used to estimate directionality indices. These were the modeling
based evolution map approach and a conditional mutual information (CMI) method for calculating
dynamic information rates. For the CMI based approach we also compared two different methods
for estimating the CMI, an equi-quantization based estimator and a k-nearest neighbors estimator.

I. INTRODUCTION

Measures of the connectivity between coupled systems
have garnered interest in disciplines from finance [1] to
ecology [2] and have become a key topic of research in
neuroscience, with connectivity measures being used to
assess neural data from various different modalities in-
cluding electroencephalography (EEG) [3–6], functional
magnetic resonance imaging (fMRI) [7], electrocortico-
graphy (ECoG) [8, 9] and local field potentials (LFP) [10–
12]. The research not only spans different modalities but
also focuses on different premises regarding connectivity:
causal relationships [10, 12], synchronization between sy-
stems [3–5], or the information flow [5, 6, 11, 12] or infor-
mation transfer [12] across systems. At their heart, ho-
wever, all attempt to quantify the relationship and inter-
dependencies between multiple (sub)systems within the
brain.

Methods for studying the relationships between cou-
pled systems range from simple measures of correlation
and coherence to more complex measures [4, 13]. Many
commonly used methods are based upon Granger causa-
lity [14] such as partial coherence [15], directed trans-
fer functions [16] and extensions thereof. Alternative
approaches include measures of synchrony using both
phase [17] and state space [3], or measures of directio-
nality including information theoretic measures such as
mutual information [18], Kullback-Leibler divergence [19]
and transfer entropy [20]. Each have their strengths and
limitations depending on the scenario. For instance some
methods may give information regarding the existence of
a relationship without knowledge about the directiona-
lity (e.g. correlation and coherence based measures) or
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may only be appropriate for linear models (e.g. stan-
dard Granger causality based measures). In fact, diffe-
rent families of measures may present us with slightly
different information regarding the data in question, the-
reby giving a more complete understanding of the relati-
onship [4]. Rather than focus on the individual connecti-
vity measures the aim of this paper is to investigate the
use and applicability of such methods in the creation of
directionality indices, with particular focus on their use
with field potential recordings of neural systems.
A directionality index provides an indication of the

asymmetry in the coupling between two systems. It is
the normalized difference between the measures of the
strength of interaction in each direction. That is,

D1→2 =
I1→2 − I2→1

I1→2 + I2→1

, (1)

where I1→2 is the measure of how the first system drives
the second and I2→1 is the same measure in the opposite
direction. The directionality index, D1→2, ranges from -1
to 1, with a value of 1 indicating unidirectional coupling
between the two systems in the direction 1 → 2 and a
value of -1 indicating the reverse is true, unidirectional
coupling in the direction 2 → 1. Hence, the accuracy of
the method used to calculate the strength of interaction
in each direction will have a significant impact on the
efficacy of the directionality index to quantify the relati-
onship.
Numerous methods have been used to quantifying the

interactions of synchronized systems and their outcomes
compared and contrasted [3, 4, 21] but when conside-
ring continuous neural systems it can be more appropri-
ate to model them as weakly coupled oscillators [22, 23].
Changes in the dynamics of weakly coupled systems can
be observed in their phase before either the amplitude
or frequency. Analyzing the data in terms of the phase
interactions allows for small initial changes in the dyn-
amics between the systems to be detected, and accura-
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tely modeled, significantly earlier than alternative appro-
aches. This study uses two different methods of estima-
ting phase interactions: a model fitting approach that
represents the coupling as a two dimensional noisy map,
called the evolution map approach (EMA) [24]; and an
information theoretic approach using conditional mutual
information (CMI) [25].

In relation to determining the directionality of coupling
it is important to have a clear perspective of what exactly
is to be measured. In many instances the terms causa-
lity, information flow and information transfer are used
almost interchangeably. From an information theoretic
point of view information transfer is one of the three com-
ponents of information flow (the other two being storage
and modification) and although many methods have been
used to measure the so called “information flow”, inclu-
ding those used in this study, it is not clear that they
truly measure the complete information flow [26, 27]. At
the same time causal interactions can occur without in-
formation transfer, however, information transfer cannot
occur without a causal interaction [28], hence absence of
information transfer does not prove the absence of a cau-
sal relationship. However, in terms of neural connecti-
vity, it may be that information transfer is the compo-
nent of information flow we are most interested in when
considering brain dynamics and the computational pro-
cesses involved [29]. Therefore, although previous work
has used the term information flow when describing the
directionality indices we have instead more precisely ter-
med them as measures of predictive information transfer.

In this study we compare and contrast the use of phase
based information transfer measures EMA and CMI to
assess the directionality of coupling. Despite both met-
hods having previously been used to create directionality
indices for use with neurological data [8, 30, 31] and the
results from both methods having been shown for cardio-
respiratory data [32] no thorough comparison of the met-
hods has been undertaken. To demonstrate the efficacy
of the approaches a simple model of two weakly coupled
oscillators is used with a number of scenarios: unidirecti-
onal coupling; bidirectional coupling; and discrepancies
between the fundamental frequencies of the oscillators.
The different parameters of the EMA and CMI methods
are studied to assess their impact on the sensitivity of
the algorithms to detect asymmetry in the coupling. For
completeness we also consider the effect of the choice of
estimator used in the CMI calculation by comparing a
marginal equi-quantization with an extension of the k-
nearest neighbor (kNN) method for mutual information
from [18].

Our findings show the necessity for the use of appropri-
ate surrogate data when creating a directionality index,
a crucial step in the assessment of any neural data where
underlying system dynamics may be unknown. We pro-
pose a method for effectively adjusting the directionality
index after surrogate data testing of the results in each
of the individual directions. This ensures a more reliable
indicator of the relationship between the two systems.

The paper is organised as follows: Sections II and III in-
troduce the EMA and CMI estimators and their directio-
nality indices, respectively. Section IV describes the sys-
tems used to test the directionality indices, the surrogate
data and the proposed correction to the directionality in-
dices using the surrogate data. Results illustrating the
impact of the surrogate correction are given in Section V
and finally, Section VI concludes the paper.

II. EVOLUTION MAP APPROACH

One simple yet effective method for measuring the di-
rection of the interaction between the phases of weakly
coupled oscillators is the evolution map approach (EMA)
based on the work by Rosenblum and Pikovsky [24] whe-
reby the relationship between the two systems is repre-
sented by a two dimensional noisy map. If we consider
the phase model of the continuous phase variables, φ1(t)
and φ2(t) with natural frequencies ω1 and ω2 respectively
as

φ̇1 =ω1 + ε1f1 (φ1, φ2) + ξ1(t),

φ̇2 =ω2 + ε2f2 (φ2, φ1) + ξ2(t),
(2)

then the coupling is described by the periodic functions
f1 and f2 and the strength of coupling by the parameters
ε1 and ε2, with ξ1 and ξ2 defining the random (aperiodic)
amplitude fluctuations.
The phase increments of the time series over a constant

time interval τ can then be defined as

∆τφ1(k) =φ1(tk + τ)− φ1(tk)

=F1[φ1(tk), φ2(tk)] + η1(tk),

∆τφ2(k) =φ2(tk + τ)− φ2(tk)

=F2[φ2(tk), φ1(tk)] + η2(tk),

(3)

where F1 and F2 represent the phase dependencies bet-
ween the two oscillators. Due to the cyclic nature of the
phases φ1 and φ2 a finite Fourier series

F1,2 =
∑

m,l

Am,le
imφ1+ilφ2 , (4)

can be used to fit, in a least mean squares sense, the
dependencies of the increments ∆τφ1 and ∆τφ2 on the
phases φ1, φ2. Using the fitting to approximate F1 and
F2 the cross dependences of the phase dynamics are then
estimated as

c21 =

∫ 2π

0

∫ 2π

0

(

∂F1

∂φ2

)

dφ1dφ2,

c22 =

∫ 2π

0

∫ 2π

0

(

∂F2

∂φ1

)

dφ1dφ2.

(5)

The directionality index is then calculated in terms of
the coefficients c1 and c2 as

D1→2 =
c2 − c1
c2 + c1

. (6)
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The EMA has previously been used to assess
the neuronal oscillations of rhythmical activity [33],
cardio-respiratory interactions [34], ECoG of hand mo-
vements [8] and different frequency bands of LFP data
from rats [31]. In [34] the EMA was compared with an
instantaneous period approach and a mutual prediction
approach and was found to be generally more stable in
terms of variation for a range of noise intensities and
coupling strengths, and when assessing the difference be-
tween coupled and uncoupled systems with common dri-
ving. An extended EMA which allows improved per-
formance for short noisy time series has been proposed
in [35] and semi-empirically determined confidence inter-
vals provided. A comparison between this approach and
an alternative state space approach suggested that for
weak phase diffusion with low noise levels and short time
series the phase based approach is superior, however, in
general both have strengths and weaknesses dependent
on the time series in question [36].
In terms of the parameters of the algorithm, the es-

timator has generally been considered to have only one
parameter, the time lag, τ which defines the size of the
phase increments. The order of the Fourier series used to
fit the dependencies, has not previously been considered
as part of the estimator - typically a model order of 3
has been used. In [24] it was stated that the size of the
increments τ was not important provided it was within a
range of approximately 0.5-50 periods of oscillation, ho-
wever, [34] recommend a value of τ = 1 period. In this
study we consider the impact of the order of the Fourier
series on the accuracy of the least mean square fit as well
as a range of different τ .

III. CONDITIONAL MUTUAL INFORMATION

An alternative approach to the EMA is to consider the
interactions of the phases from an information theore-
tic point of view rather than a model fitting one. For
two coupled systems X and Y where the time series
{x(t)} and {y(t)} are individual realizations of the sys-
tems, the mutual information I (x(t); y(t+ τ)) represents
the amount of information contained in X about Y in its
future τ time units ahead. However, if X and Y are not
independent this measure could also contain information
about the future of Y contained in the process itself. By
conditioning the mutual on the time series y(t) to give
the conditional mutual information (CMI)

I
(

x(t); y(t+ τ)
∣

∣y(t)
)

, (7)

we have the information contained in X about the future
of Y , not including the history of Y contained within
Y itself or their shared history. In this way the CMI
can be considered an information theoretic formulation
of Granger causality and also has an equivalence with
transfer entropy [37]. For a general review of information
theoretic approaches to causality see [38].

To investigate the directionality of coupling requires
information about how the dynamics of one system in-
fluences the other, for this purpose coarse-grained infor-
mation rates can be used. Coarse-grained information
rates provide measures of the regularity and predictabi-
lity of systems. They are inversely proportional to coarse-
grained entropy rates (measures of chaoticity or complex-
ity) which can be used to classify states of chaotic systems
in the same way as the Kolmogorov-Sinai entropy can [5].
Coarse-grained information rates are defined in terms of
the mutual information norm and have been shown to be
more robust to noise and less computationally complex
than alternatives such as Lyapunov exponents. To cal-
culate the coarse grained information rate the average of
the CMI over a range of values of τ is taken to give

i (X,Y |Y ) =
1

τmax

τmax
∑

τ=1

I(x; yτ |y), (8)

where x = x(t), y = y(t) and yτ = y(t + τ) and τmax is
usually defined in terms of the maximum value of τ for
which the information between y and yτ is non zero.

To calculate the directionality index from the instan-
taneous phases as in (3) and in line with the approach
from [25] we consider the phases in terms of their phase
increments

∆τφ1 =φ1(t+ τ)− φ1(t)

∆τφ2 =φ2(t+ τ)− φ2(t).
(9)

Replacing the time series with the phases in (8) gives the
information rates in each direction as

i (1 → 2) =
1

τmax

τmax
∑

τ=1

I(φ1; ∆τφ2|φ2)

i (2 → 1) =
1

τmax

τmax
∑

τ=1

I(φ2; ∆τφ1|φ1),

(10)

finally a directionality index is constructed in the same
manner as for the EMA

D1→2 =
i(1 → 2)− i(2 → 1)

i(1 → 2) + i(2 → 1)
. (11)

The problem of estimating CMI can be defined in terms
of estimating a series of entropies and then computing the
CMI. The CMI can be defined in terms of entropies as

I(X;Y |Z) = H(X,Z) +H(Y,Z)−H(Z)−H(X,Y, Z).
(12)

Estimation of the entropies requires accurate calcula-
tion of the probability density functions of the data.
For this purpose we compare two different methods, one
non-parametric and one parametric. The non-parametric
method is based upon equi-quantization and the parame-
tric on k-nearest neighbors (kNN). Although a number
of alternative estimation methods exist (see [38]) these
methods have been selected as they have previously been
shown to provide reliable estimates of CMI [39].
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The non-parametric equi-quantization method is a bin-
ning method based upon dividing the sample space into a
set number of equi-probable bins. The data is first sorted
by magnitude and then partitioned such that all the bins
contain approximately the same number of data points.
The equi-quantization method was previously shown to
provide robust estimates of CMI with relatively small va-
riance albeit at the expense of having a higher bias [39].
The parametric kNN method is an extension of the

approach from [18] for estimating mutual information.
The kNN method has previously been applied to the es-
timation of CMI for state space reconstructions [40] and
also to phase data where it was shown to provide accu-
rate results with a relatively low bias albeit with some
sensitivity to the choice of the number of neighbors [39].
However, the kNN algorithm for estimating mutual in-
formation provides two different approaches, one based
upon estimating the k neighbors from a square neighbor-
hood the other using a rectangular neighborhood. As the
rectangular version has been shown to be better suited to
higher dimensional data [18] - which in terms of neurolo-
gical data with recordings from multiple electrodes may
well be an issue - we have opted to extend the rectangu-
lar version to the estimation of CMI details. Following
a similar approach to the extension of the mutual infor-
mation estimator to the estimation of transfer entropy
in [41] we get an estimator of the CMI given by

I(X;Y |Z) =H(X,Z) +H(Y,Z)−H(Z)−H(X,Y, Z)

=ψ(k)−
dx + dy + dz − 1

k
+

〈

− ψ(nxz)− ψ(nyz) + ψ(nz)

+
dx + dz − 1

nxz
+
dy + dz − 1

nyz
−
dz − 1

nz

〉

,

(13)

where < . . . > denotes the average over i ∈ [1, . . . , N ]
and over all realizations. Details of the derivation of this
estimator are given in the appendix.

IV. NUMERICAL EXPERIMENTS

Numerical experiments were performed for a number
of different scenarios with data generated from a cou-
pled pair of Rössler systems [42]. The Rössler model has
previously been used in the study of the interactions of
coupled oscillators and to test the effectiveness of both
the EMA and CMI directionality indices [24, 25].
In each of the scenarios described below we investiga-

ted the impact of the parameters on the accuracy of the
methods. For all three methods the time lag defining
the size of the phase increments was addressed by adjus-
ting the value of τ in the EMA and the value of τmax for
which the estimates are averaged across for the CMI met-
hods. For the EMA we also varied the model order of the
Fourier series used to fit the data dependencies and for

TABLE I. Parameters of the Rössler systems.

System Coupling Direction ω1 ω2 ǫ1 ǫ2

1 unidirectional 1 → 2 0.85 1.15 0 0.05

2 unidirectional 1 → 2 0.5 2.515 0 0.1

3 unidirectional 2 → 1 0.5 2.515 0.1 0

4 bidirectional 1 → 2 0.85 1.15 0.01 0.02

5 bidirectional 2 → 1 0.85 1.15 0.01 0.005

6 bidirectional equivalent 0.85 1.15 0.01 0.01

the CMI/CMI-kNN the number of quantizations/nearest
neighbors used in the probability density function esti-
mates, respectively. The effect of the coupling strength
was not considered as both the EMA and CMI methods
of detecting phase based directionality are known to fail
in the presence of synchronization, see [24, 25].

A. Systems

The coupled Rössler model is described by [43, 44]

ẋ1,2 =− ω1,2y1,2 − z1,2 + ǫ1,2 (x2,1 − x1,2) ,

ẏ1,2 =ω1,2x1,2 + 0.15y1,2,

ż1,2 =0.2 + z1,2(x1,2 − 10), (14)

where ω1,2 are the fundamental frequencies of the oscil-
lators and ǫ describes the strength of the coupling. To
cover a number of scenarios we generate systems based
on six different sets of parameters, listed in Table I. For
every system 100 random initializations were generated
each with 10,000 data points and approximately 20 sam-
ples per period. The resulting 500 periods of oscillation
have previously been shown to be sufficient for accurate
estimation using the EMA [24] with the CMI requiring
less data [39]. Instantaneous phases of the systems were
generated from the analytic signals of ẋ1,2 obtained via
the Hilbert transform. Of the systems outlined in Table I,
the first three all had unidirectional coupling between the
oscillators.

1. The first system is a straightforward unidirectional
coupling of two roughly equivalent oscillators with
the coupling from oscillator 1 to oscillator 2.

2. The second system has an imbalance in the ratio of
the frequencies of the two oscillators of approxima-
tely 1:5, the coupling in the system remains from
oscillator 1 to oscillator 2, meaning the coupling is
from the slower oscillator to the faster.

3. The third system is the same system as system 2
but with the direction of the coupling reversed so
that the direction of coupling is now from oscillator
2, with the faster frequency of oscillation, to oscil-
lator 1, with the slower frequency of oscillation.
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The last three systems all have oscillators of roughly equi-
valent frequency but this time with bidirectional cou-
pling.

4. The coupling in System 4 is in both directions but
with stronger coupling in the direction of oscillator
1 to oscillator 2.

5. For the next system the coupling strengths are lo-
wer than those in System 4 and with the direction
of the stronger coupling reversed so as to be in the
direction of oscillator 2 to oscillator 1.

6. The coupling strengths in the final system are equi-
valent in both directions.

All the systems have previously been used to investigate
the performance of the CMI methods. Systems 1-3 have
been used to assess the effect of the number of data sam-
ples and size of the bins/number of neighbors for both
the CMI and a variant of the CMI-kNN method [39],
whereas systems 4-6 have been used to asses the effects
of the data length, quantization and length of the lag for
the CMI directionality index [25].

B. Surrogate Data

To test the significance of the results obtained from
all three approaches, a surrogate data method was used.
Surrogate data time series have the same statistical pro-
perties as the original data but with all dependencies
destroyed [45, 46]. In this case the surrogate data was
generated using an iterative amplitude adjusted FFT
(iAFFT) to preserve both the amplitude and frequency
distributions of the data [47]. For each pair of time series
in the original data, the data of the driving system was
left unaltered and surrogates of the driven system were
created.
Having obtained a set of surrogate data with the same

properties as the original data but with no causal rela-
tionship, the directionality results for the surrogates are
obtained and a distribution of the values created. From
these results a range of values which the surrogate data
is expected to take can be defined. Identifying whether
the directionality results of the original data fall outside
the expected range of the surrogate data gives a determi-
nation of whether the results are significant or whether
by using these results we may be incorrectly inferring a
causal relationship. Setting an interval of ±2 standard
deviations around the mean of the surrogate data gives
an assumption that 95% of the surrogate data should fall
within this range and hence we can infer confidence that
any results falling outside of this region correctly identify
the direction of the causal relationship.
However, how best to determine the surrogate data

range for the directionality indices needs to be conside-
red. Surrogate data testing of directionality indices can
be approached in two different manners, one is to test
the directionality index itself against the directionality

FIG. 1. Comparison of surrogate data regions for D and I1→2

and I2→1.

indices generated using the surrogate data. The second
approach is to test each measure of the coupling against
the surrogate data before calculating the directionality
index. A number of surrogate data generation appro-
aches have been considered when testing the statistical
validity of CMI results; including Fourier transform ba-
sed surrogate data generation methods [39, 48]. While
neither [39] or [48] created directionality indices both
tested the significance of the individual measures of cou-
pling generated using the CMI method. Alternatively,
[25] took the approach of testing directly on the directi-
onality indices created from the surrogate data. To the
best of our knowledge nobody has yet tested the EMA
method against surrogate data to check the statistical
validity of the results.

Figure 1 shows a range of values of I1→2 and I2→1 with
specified means, µ1 and µ2, and standard deviations σ1
and σ2. The shaded regions indicate the areas covered by
µ1,2 ± σ1,2, which in this case relates to the area within
which approximately 68% of the surrogate data can be
expected to fall. Using the same example values of I1→2

and I2→1 directionality indices D1→2 were calculated and
a mean µD and standard deviation σD of the indices es-
timated. Plotting the values of µD ± σD as functions of
I1→2 and I2→1 it can be seen that there are areas cove-
red by the regions I1→2 = µ1 ± σ1 and I2→1 = µ2 ± σ2
which are not covered by the region D = µD ± σD. This
includes regions (where either I1→2 is close to µ1 − σ1
and I2→1 is close to µ2 + σ2 or I1→2 is close to µ1 + σ1
and I2→1 is close to µ2 − σ2) where data which would
fall inside the range of the surrogate data for both I1→2

and I2→1 is outside of the range of the surrogate data if
testing against the values of D1→2. This holds true for
all multiples of σ. Therefore, it is necessary rather than
testing against the directionality indices created from the
surrogate data to first test each individual direction be-
fore calculating the directionality indices.
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Here we propose an adjustment to how the directiona-
lity index is created based upon the results of the tests
for statistical significance. First I1→2 and I2→1 are tested
against the surrogate data. If the result can be conside-
red to be more significant than just the result of any bias
in the estimator then it is left as it is, otherwise it is set
to 0. The corrected directional results for I1→2 are given
by

I1→2corr =











I1→2 if I1→2 > µ1 + σ1,

I1→2 if I1→2 < µ1 − σ1,

0 otherwise,

(15)

where µ1 and σ1 are the mean and standard deviation of
the estimates of I1→2 from the surrogate data, the same
correction is performed for I2→1. Using these corrected
values the directionality index can be estimated as in (1).
In this case the corrected value would result in values of
1 and -1 indicating unidirectional couplings as before, a
value of 0 for equivalent bidirectional coupling and an
undefined result when there is no coupling present.

V. RESULTS

A. Unidirectional Coupling

As an initial test, directionality indices using both the
original and the surrogate corrected formulation ofD1→2,
were calculated for 100 different initializations of the uni-
directionally coupled equivalent Rössler oscillators des-
cribed as System 1 in Section IVA. The average value
of D1→2 for a range of different parameters of the three
test algorithms are illustrated in Fig. 2. For the EMA
algorithm the model order of the Fourier series ranged
from 1:10. For the CMI and CMI-kNN the quantization
or k-nearest neighbors took values of 2, 4, 8, 16, 32 and
64. The mutual information between the data and lag-
ged versions of itself were calculated and a lag value of
120 was determined to be the point where the mutual in-
formation became approximately zero. Hence, the max-
imum lag τmax the CMI was averaged across to obtain
the information rates were selected to be from 10 to 120
in steps of 10. Due to the difference in the set-up of the
EMA a finer graining in the lag value, τ , was selected for
small values of the lag, with initial steps of one for lags
1 to 20 after which larger steps of 10 were tested for 30
to 120.
As can be seen from Fig. 2 the majority of parame-

ter settings gave a correct indication of the direction of
coupling, albeit with smaller values for the original for-
mulations (Fig. 2a, 2c, 2e). Figures 2a and 2b show that
on the whole the EMA values were lower than the com-
parable results from other methods and that the smaller
model orders of the original EMA gave incorrect indi-
cations of the direction of coupling. The only setting of
the recalibrated directionality indices to give incorrect re-
sults was for the very small value of k = 2 for CMI-kNN

(Fig. 2f) which became unreliable results as the value of
the maximum lag increases due to the limited accuracy
of the probability distribution estimated from only two
neighbors.

Closer analysis of the distribution of the results re-
veals a noticeable difference between the EMA and CMI
approaches. Table II shows the parameters of the algo-
rithms which gave the most successful results across all
lags. For each algorithm the percentage of correct di-
rectionality indices for both the original and recalibrated
versions are shown, along with the percentages of the
results which are outside the range obtained from 100
different surrogates for each instance. For the original
indices the percentage of the indices themselves outside
of the range of the surrogate generated indices are given
whereas for the recalibrated indices the percentage of the
measures in each direction are given. The results illus-
trate that there are parameters of both CMI estimators
which result in 100% correct directionality indices. The
differences in the formulation of the original and the re-
calibrated indices mean that while results in the correct
direction must be by default outside of the range of the
surrogates in at least one direction for the recalibrated
version, this is not the case for the original formulation.
This can be seen for the CMI-kNN where although the
results may all be in the correct direction when consi-
dering the original formulation there is a slightly lower
maximum of 99% of results outside of the range of the
surrogate data. However, these results fall within the
range of what may be expected due to chance, unlike the
EMA. The best combination achieved with the original
EMA was 93% and occurred for a model order of 9 at
lag τ = 10. The recalibrated version gave 33% correct
also at an order of 9 but with a lag of τ = 90. In both
cases the number of these results which were outside of
the range of the surrogates was only 33%.

Based on the results from the first system while all
the methods gave correct results the EMA did not pro-
vide results which were consistently statistically valid.
Comparing the CMI methods, the original directionality
indices proved to have greater sensitivity to the parame-
ters of the algorithms. Table II shows only the results
from the best performing parameters of the algorithms,
however, for the recalibrated directionality indices simi-
lar results were also obtained for the CMI algorithm with
q = 4 and q = 16 and for the kNN version for k = 16 and
k = 64. In contrast the performance of the original CMI
algorithms deteriorated with any change in the values of
q and k, and showed greater variability in the significance
of the results dependent on the maximum lag chosen.

Table II illustrates that for the CMI methods when
using the corrected directionality indices it is possible to
obtain a correct indication of the direction of coupling
based on the results from only one direction. In this case
only the coupling in the direction 1 → 2 consistently
gave results outside of the range of the surrogates with a
maximum of 8% of results in the opposite direction out-
side of the range of the surrogates. In contrast, Table III
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FIG. 2. Directionality indices averaged over 100 initializations for System 1: Rössler oscillators with unidirectional coupling
from oscillator 1 to oscillator 2 (positive directionality indices) using a range of parameters of the different estimation methods.
The left hand plots display the original directionality indices while the right hand plots are the recalibrated directionality
indices. Top row: EMA; Middle row: CMI; bottom row: CMI-kNN.

shows the results of the directionality tests for coupling
between oscillators of different frequencies as described
in Section IVA, Systems 2 and 3. In this case for the
CMI algorithm, with q = 4, when the coupling was from

the fast to slow oscillator (direction 2 → 1) there were
at least 40% of the results in the direction 1 → 2 which
were outside of the range of the surrogates. However,
this has no impact on the recalibrated directionality in-
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TABLE II. Comparison of most successful parameters of the algorithms for a range of different lags/maximum lag for System
1: Rössler systems with unidirectional coupling from oscillator 1 to oscillator 2.

Algorithm Parameters % Correct % Outside Surrogates

Original Recalibrated Original D1→2 1 → 2 2 → 1

EMA order = 9 [73, 93] [8, 33] [9, 33] [9, 33] [9, 33]

CMI q = 16 100 100 [85, 100] 100 [5, 7]

CMI-kNN k = 32 100 100 [82, 99] 100 [7, 8]

TABLE III. Example results for Systems 2 and 3 with coupling between oscillators of different frequencies for EMA with order
= 3, CMI with q = 4 and CMI-kNN with k = 16 across a range of lags/maximum lag. System 2 with coupling from the slower
to faster oscillator (oscillator 1 to oscillator 2) results in a positive directionality index, System 3 with coupling from the faster
to slower in a negative directionality index.

Avg D1→2 % Correct % Outside Surrogates

Original Recalibrated Original Recalibrated Orig D1→2 1 → 2 2 → 1

EMA

slow to fast [0.06, 0.41] [−0.65,−0.08] [66, 91] [0, 5] [10, 22] [10, 22] [10, 22]

fast to slow [−0.18, 0.70] [−0.63, 0.00] [0, 83] [0, 1] [0, 5] [0, 5] [0, 5]

CMI

slow to fast [0.88, 0.94] [1.00, 1.00] 100 100 100 100 [1, 3]

fast to slow [−0.99,−0.98] [−0.99,−0.99] 100 100 0 [43, 49] 100

CMI-kNN

slow to fast [0.94, 0.97] [0.99, 1.00] 100 100 0 100 [1, 2]

fast to slow [−1.00,−1.00] [−1.00,−1.00] 100 100 [0, 1] [15, 21] 100

dices with 100% in the correct direction with a value on
average of -0.99. Comparing this with the results of the
original directionality index where although the directio-
nality indices were again all in the correct direction with
similar average values, the results indicated that non of
these values were outside of the range of the surrogate
data.

The values of the order of the EMA algorithm and
the parameters q and k of the CMI algorithms given in
Table III were chosen as they provided the largest num-
ber of results, in the opposite direction to coupling, that
were outside of the range of the surrogates and particu-
larly highlight the differences between the proposed re-
calibrated estimator and the original estimator. Figure 3
shows the ranges of the surrogate data and average va-
lues of the coupling along with the corresponding original
directionality indices and their surrogates for a range of
different lag values for the EMA algorithm with order=3.
The EMA algorithm displayed a wide range of variability
both in the original and the recalibrated versions with a
higher percentage of correctly identified directions of cou-
pling from the original directionality index, however, the
percentage of results outside of the range of the surro-
gates was the same for both versions and lower than for
either of the CMI algorithms.

Figure 4 and Fig. 5 show the same information for the
CMI with q = and CMI-kNN with k = 16 respectively.
Unlike the CMI estimator the CMI-kNN estimator has

lower percentages of results outside of the range of the
surrogates, for the opposite direction to the coupling. In
these scenarios there were a maximum of 21% of the re-
sults in the direction opposite to the coupling that were
outside the range of the surrogates but again 100% of
directionality indices were in the correct direction with
average values close to 1 or -1. As with the CMI algo-
rithm the original CMI-kNN directionality indices gave
similar results to the recalibrated but with a maximum
of 1% of the results being outside of the range of the
coupling.

B. Bidirectional Coupling

As a final test of the effectiveness of the new cor-
rected directionality indices we analyzed three systems
with bidirectional coupling as described in Systems 4-6
in Section IVA. As the directionality indices produce
continuous values from −1 to 1, to distinguish between
directionality in each direction and equivalent coupling,
which should give a value of close to zero, thresholds
were set at −0.25 and 0.25. Table IV shows the percen-
tage of the test data sets across the range of maximum
lag values tested, which are determined to have coupling
in each direction (values either over 0.25 or below −0.25)
or equivalent coupling (between −0.25 and 0.25). For
the proposed directionality indices only we also show the
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(a) (b)

(c) (d)

FIG. 3. Information transfer using EMA, order= 3 for coupled Rössler systems with a frequency ratio of 1:5. Plots on the left
are coupling from fast to slow (positive directionality index) and on the right from slow to fast (negative directionality index).
Top row shows the average recalibrated coupling in each direction. Blue (crosses) solid line: average recalibrated coupling in
the direction 1 → 2, dashed line: average coupling from surrogates in the direction from 1 → 2, shaded area: 95% range of
the surrogate data. Red (squares) lines in the direction 2 → 1. Bottom row shows the average original directionality indices.
Solid line: average original directionality index, dashed line: average directionality index from the surrogates, shaded area:
95% range of the surrogate data.

percentage which are identified as having no coupling,
the original directionality indices assume that the sys-
tems are coupled and only provides an indication of the
direction of that coupling.

As with the unidirectional coupling the EMA algo-
rithm had a wide range of results with no consistently
correct indication of the direction of coupling. For all
three systems and both formulations the maximum per-
centage of results outside of the range of the surrogate
data was 68%. The original formulation of the directi-
onality index was most likely to say the bidirectional
coupling was equivalent coupling (based on our selected
thresholds). With the recalibrated directionality index
more likely to give a result of no coupling.

For Systems 4 and 5 the coupling in both cases was
bidirectional but with different strengths and with the
predominant direction of coupling in opposite directions
from 1 → 2 for System 4 and from 2 → 1 for System 5.
From Table IV we can see the recalibrated directionality
indices calculated using the CMI algorithm successfully

identified the directions of weak bidirectional coupling.
There were only a small number of results below the
thresholds to be considered equivalent coupling. In the
same scenarios the original directionality index identified
the coupling as equivalent coupling in all cases. For all
situations and both formulations of the directionality in-
dices 100% of the results were outside of the range of the
surrogate data.

If we compare the results of the CMI-kNN algorithm in
Table IV, again the original formulation of the directio-
nality index was most likely to indicate that the coupling
was equivalent. Although this time with a lower percen-
tage of results outside of the range of the surrogates. This
pattern was continued for the recalibrated directionality
index where, in the situations where the results were out-
side of the range of the surrogate data, the direction
would most likely be correct. However, again there was a
higher probability when using this algorithm that neither
of the measures of information transfer would be outside
of the range of the surrogate data. Hence, the directio-



10

(a) (b)
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FIG. 4. Information transfer using CMI, q = 4 for coupled Rössler systems with a frequency ratio of 1:5. Plots on the left are
coupling from fast to slow (positive directionality index) and on the right from slow to fast (negative directionality index). Top
row shows the average recalibrated coupling in each direction. Blue (crosses) solid line: average recalibrated information in
the direction 1 → 2, dashed line: average information from surrogates in the direction from 1 → 2 shaded area: 95% range of
the surrogate data. Red (squares) lines in the direction 2 → 1. Bottom row shows the average original directionality indices.
Solid line: average original directionality index, dashed line: average directionality index from the surrogates, shaded area:
95% range of the surrogate data.

nality index would indicate that there was no coupling.
These results illustrate that even for a correctly calcula-
ted directionality index the choice of algorithm used to
create the estimator remains still important.

The final system, System 6, with equivalent coupling,
was correctly identified using the original formulation of
the directionality index 100% of the time for the CMI al-
gorithm and at least 99% of the time for the CMI-kNN. It
should be noted, however, this formulation identified all
bidirectional coupling as equivalent. Comparing the two
algorithms again the CMI-kNN had a lower percentage
of the results which were outside of the range of the sur-
rogate data and could be considered significant. Using
either algorithm the recalibrated index did not manage
to reliably identify the equivalent coupling with both es-
timators more often identifying the equivalent coupling
as a larger coupling in the direction 1 → 2. This, may of
course be related to a bias in the estimators rather than
a direct limitation in the calculation of the directionality
indices.

VI. CONCLUSION

We have studied the use of directionality indices as a
method of demonstrating the asymmetry in coupling be-
tween systems. Our results indicate that it is necessary
to consider using appropriate tests of the significance of
any results before inferring directionality of coupling. We
propose a corrected directionality index which uses surro-
gate data testing to ensure valid results. This is achieved
by factoring in differences between the results obtained
when using the surrogate data to test the individual me-
asures of coupling versus testing the directionality index
directly. We have compared our proposed recalibrated
directionality index with results from the original directi-
onality index to show that the our proposed correction
gives results which are more consistently significant for
the tested systems and methods.

We compared two different methods of estimating cou-
pling in order to generate the directionality indices: the
modeling based EMA and a CMI approach to calculating
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(a) (b)

(c) (d)

FIG. 5. Information transfer using CMI-kNN, k = 16 for coupled Rössler systems with a frequency ratio of 1:5. Plots on the left
are coupling from fast to slow (positive directionality index) and on the right from slow to fast (negative directionality index).
Top row shows the average recalibrated coupling in each direction. Blue (crosses) solid line: average recalibrated information
in the direction 1 → 2, dashed line: average information from surrogates in the direction from 1 → 2 shaded area: 95% range
of the surrogate data. Red (squares) lines in the direction 2 → 1. Bottom row shows the average original directionality indices.
Solid line: average original directionality index, dashed line: average directionality index from the surrogates, shaded area:
95% range of the surrogate data.

TABLE IV. Example results of coupling between oscillators with bidirectional coupling, Systems 4-6, for EMA order = 3, CMI
q = 64 and CMI-kNN k = 8. For each of the three scenarios: weak coupling stronger from 1 → 2, very weak coupling stronger
from 2 → 1 and equivalent coupling the table provides the percentages identified as in the direction 1 to 2, direction 2 to 1,
equivalent coupling or no coupling along with the percentages outside of the range of the surrogate data.

% 1 → 2 % 2 → 1 % Equivalent % No Coupling % Outside Surrogates

Orig Recal Orig Recal Orig Recal Orig Recal Orig D1→2 1 → 2 2 → 1

EMA

weak 1 → 2 [11, 35] [11, 35] [3, 14] [0, 1] [56, 77] [0, 28] N/A [44, 88] [12, 56] [12, 56] [12, 56]

very weak 2 → 1 [23, 45] 0 [0, 16] [0, 16] [42, 74] [30, 60] N/A [33, 68] [32, 67] [32, 67] [32, 67]

equivalent [25, 41] [13, 41] [1, 10] 0 [49, 71] [0, 34] N/A [37, 87] [13, 68] [13, 68] [13, 68]

CMI

weak 1 → 2 0 [89, 92] 0 0 100 [8, 11] N/A 0 100 100 [8, 11]

very weak 2 → 1 0 0 0 [82, 85] 100 [15, 18] N/A 0 100 [15, 18] 100

equivalent 0 [83, 90] 0 0 100 [10, 17] N/A 0 100 100 [10, 17]

CMI-kNN

weak 1 → 2 [0, 9] [8, 63] 0 [5, 10] [91, 100] [1, 4] N/A [26, 80] [6, 37] [12, 65] [9, 14]

very weak 2 → 1 [0, 1] [0, 8] 0 [64, 80] [99, 100] [12, 34] N/A [0, 16] [56, 100] [19, 36] [77, 100]

equivalent [0, 10] [37, 90] 0 [1, 5] [99, 100] [4, 13] N/A [2, 56] [14, 77] [42, 96] [7, 14]
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dynamic information rates. These methods were selected
as both have previously been used to calculate directio-
nality indices. For the CMI based approach we also com-
pared two different methods for estimating the CMI. Our
results show that although the EMA has previously been
used in conjunction with directionality indices, using sur-
rogate data testing and our corrected directionality index
the results of this approach are not consistently statisti-
cally valid. When comparing the two CMI based estima-
tors it was found that for unidirectional coupling there
was little difference between the two approaches. Howe-
ver, when analyzing bidirectional coupling the differen-
ces in the CMI estimators became more apparent with
the quantization based approach proving more effective
until the coupling became very weak. For very weak bidi-
rectional coupling the kNN based approach proved more
sensitive to detecting this coupling than the quantiza-
tion based approach. In terms of equivalent bidirectional
coupling both methods failed to correctly identify this
coupling indicating a possible bias in the estimators. It
should be noted that these are only two possible met-
hods for calculating information transfer and the propo-
sed corrected directionality index could be applied to any
unidirectional estimator of information transfer.
We have also extended the k-nearest neighbors met-

hod described in [18] based on the approach in [41] to
give a more precise estimator for higher dimensions. In
the example systems used here, in order to provide a di-
rect comparison between the EMA and the quantization
estimator, the systems were only one dimensional. In
this case the estimator reduced to the rectangular esti-
mator from [18] adapted for CMI. Having addressed the
use of the directionality index as a method for describing
the relationship between systems it would be of interest
to test the proposed extension of the CMI approach on
multidimensional neural data.

Appendix: Extension of kNN estimator for CMI

Following a similar approach to the extension of the
mutual information estimator for application to transfer
entropy [41] we first consider the calculation of the Shan-
non entropy based on the Kozachenko-Leonenko estima-
tor [18]. If we have N realizations xi of random variable
X with density function µ(x) the Shannon entropy can
be given as

H(X) = −

∫

dxµ(x) log µ(x), (A.1)

which for an unbiased estimator ̂log µ(x) becomes

Ĥ(X) = −
1

N

N
∑

i=1

̂log µ(xi). (A.2)

If ε(i)/2 is the distance between any point xi and its
kth nearest neighbor, then pi and vi are the mass and

volume, respectively, of the hyper-ball with radius ε(i)/2
centered on the point xi. Assuming the density µ(x) is
constant within the entire ball then

pi(ǫ) ≈ cdε
dµ(xi), (A.3)

where d is the dimension of x and cd is the volume of the
d-dimensional unit ball. It can also be shown that the
expectation value of log pi(ε) can be given as [18]

E[log pi] = ψ(k)− ψ(N), (A.4)

where ψ is the digamma function. Combining (A.3)
and (A.4) gives

ψ(k)− ψ(N) ≃E
[

log
(

cdε
dµ(xi)

)]

=E [log µ(xi)] + E
[

log
(

cdε
d
)]

=−H(X) + E [log vi] , (A.5)

hence, giving

Ĥ(X) = ψ(N)− ψ(k) +
1

N

N
∑

i=1

log vi. (A.6)

The CMI calculated by the sum of entropies as defined
in (12) requires estimates of the entropy in both the joint
and marginal spaces. However, using the same value of
k across all spaces can result in problems occurring be-
cause the biases in the estimates do not cancel due to
calculating over different scales. In [18] it was noted that
the entropy estimator (A.6) would hold for any value of
k. Therefore, rather than calculating the entropies in
both the joint and marginal spaces based on the same k,
they could be calculated based on the same distance ε.
The number of points, nx[i], within this region is defined
as the points within the lines x = xi ± ε(i)/2 and the
corresponding estimator becomes

Ĥ(X) = ψ(N) +
1

N

N
∑

i=1

(

log vi − ψ
(

nx[i]
)

)

. (A.7)

However, defining the spaces in this way results in a
hyper-cube where the length of the sides, ε, are defi-
ned as twice the distance to the kth nearest neighbor
in the joint space, which means the estimates in the
marginal spaces are only truly accurate for one variable.
To overcome this the authors in [18] propose a second
mutual information estimator using hyper-rectangles to
define separate ε for each variable. For m variables, if
qi(εx1

, ...εxm
) is the mass of the hyper-rectangle of size

εx1
×εx2

×, . . . , εxm
centered at (x1,i, x2,i, . . . , xm,i), then

E [log qi] = ψ(k)− (m−1)/k−ψ(N). In [41] the authors
extended this principle from the estimation of mutual
information of multivariate data to the estimation of en-
tropy of multidimensional data. For data of dimension d
the expectation of log qi(ε1, ..., εd) becomes

E [log qi] = ψ(k)− (d− 1)/k − ψ(N), (A.8)
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and the entropy estimator

Ĥ(X) = ψ(N)− ψ(k) +
d− 1

k
−

1

N

N
∑

i=1

log vi, (A.9)

where vi is now the volume of the minimum volume
hyper-rectangle centred at xi.

If we consider the CMI of three multidimensional
random variables X, Y and Z, then, based on (A.9) the
entropy estimator in the joint space is given by

Ĥ(X,Y, Z) =ψ(N)− ψ(k) +
dx + dy + dz − 1

k

+
1

N

N
∑

i=1

log vi. (A.10)

In the marginal spaces (X,Z), (Y,Z) and Z using the
same dimensions of the minimal hyper-rectangle as for
the joint space and estimators based on an arbitrary num-

ber of points as in (A.7) then we have

Ĥ(X,Z) =ψ(N) +
1

N

N
∑

i=1

(

log vi − ψ
(

nxz[i]
)

+
dx + dz − 1

nxz[i]

)

, (A.11)

Ĥ(Y,Z) =ψ(N) +
1

N

N
∑

i=1

(

log vi − ψ
(

nyz[i]
)

+
dy + dz − 1

nyz[i]

)

, (A.12)

Ĥ(Z) =ψ(N) +
1

N

N
∑

i=1

(

log vi − ψ
(

nz[i]
)

+
dz − 1

nz[i]

)

, (A.13)

resulting in the estimator of the CMI as given in (13).
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Phys. Rev. E 63, 046211 (2001).
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