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Abstract—Surface electromyography (SEMG) has the potential
to provide valuable information regarding the status and heailth
of a muscle. In particular, recent developments in high dengy
SEMG (HD-sEMG), which allow simultaneous recordings from
a greater number of electrodes, enable the calculation of macle
attributes such as the conduction velocity of motor unit adon
potentials. However, as with standard recording montagesHD-
SEMG requires careful placement of the electrodes to align
with the direction of the muscle fibres, thus limiting practical
applications. In this paper we demonstrate an algorithm for
calculating muscle fibre conduction velocity which is indepndent
of the alignment of the array. The algorithm automatically
corrects for the misalignment of the array whilst estimating the
conduction velocity using common local all-pass (CLAP) fikers.
Specifically, the misalignment is modelled as a rotation ofhe
array relative to the fibre and this rotation is estimated by
iteratively fitting the model to the output of the CLAP filters.
We validate the proposed algorithm on simulated HD-sEMG daa
generated from a realistic biological model, demonstratig that
the algorithm obtains an accurate estimate of the conductio
velocity even when the array is misaligned.

I. INTRODUCTION

and status of the muscle [4]. One important muscle attribute
which has the potential to inform on neurological diseases a
can be measured using SEMG is the muscle fibre conduction
velocity (MFCV) [5]. MFCV describes the speed at which MU
action potentials (MUAPS) are propagating along the muscle
fibre and also finds application in measuring muscle fatigue f
sports or rehabilitation. A number of methods for estimatin
MFCV have been proposed [6], [7], [8], [9], [10], howevereth
problem is not straightforward and there are known diffieglt
surrounding measuring MFCV.

Estimation of MFCV often requires careful placement of
the electrodes in terms of alignment with the fibres and
location with respect to the innervation zone (1Z) and tando
regions. All of which can affect estimates of conduction
velocity (CV) [11]. However, it is not only the recording set
up which can impact upon the estimate of the MFCV there
are also a number of different physiological factors which
affect measurements of the MFCV. During the course of a
contraction changes in the CVs of individual motor units, as

Surface electromyography (SEMG) provides a measure well as changes in recruitment and synchronization of MUs

the electrical activity produced during muscle contrawsio €an @lso affect the overall MFCV. Hence, MFCV is time-

Due to its ease of use and non-invasive nature, SEMG H&¥Ying in nature and requires an estimation method which
attracted attention in a number of different areas from +ehgn not only measure but also track changes in CV. However,
bilitation and prosthetics to human computer interfacds [1M2ny of the MFCV estimation methods only provide fixed CV
Developments in sensor technologies, flexible electrodels £Stimates limiting their application.
wireless devices have the potential to allow for small galeta  High density SEMG (HD-sEMG) which uses 2D electrode
recording devices for SEMG. Such devices can be used if4@ys has been shown to reduce the sensitivity to electrode
greater range of recording scenarios allowing the momigpri displacements [6] and provide accurate estimates of time-
of muscle activity to be taken out of a laboratory setting an@rying MFCV [9], [10]. However, the issue of alignment
into everyday life. Despite the many desirable properties th thg direction of the fibres remains. In_[8] a method for
SEMG there are also limitations [2]. Recordings of SEMG afestimating both MFCV and the fibre orientation with respect t
affected by the impedance between the skin and the electrdd€ 2D electrode array was proposed. However, this method
are subject to noise and interference - both biological afifl not consider time-varying velocities and was reliant on
external; and are impacted by the location of the recordiig st'acking the propagation of individual MUAPs through the
in relation to the muscle. Hence, a great deal of effort hmgoelectrode array. Hence it was .tested on simulations witl anl
not only into guidelines regarding the recording of SEMG [3jmall number of MUs (up to nine) and real data from very low
but also into developing techniques for the processing a el contractions (5% of maximum voluntary contraction).
identification of features of SEMG [1], [4]. Again this limits practical application of the technique as
The signals acquired via SEMG are superpositions of tifgeical muscle contractions involve stronger contractiand
activities of the motor units (MU$)within the recording re- larger numbers of MUs. o _
gion of the electrode. As such, there is the potential tojoiy N [12] we proposed a method for estimating MFCVs using

valuable information regarding the neurological contnalalth '0ca@l all-pass filters by posing the problem as estimating
a common time-varying delay (TVD) from an ensemble of

signals. The proposed common local all-pass (CLAP) algo-
rithm was shown to be accurate in the presence of noise

LA motor unit comprises of a single motor neuron which inntgsaa group
of muscle fibres



and insensitive to positioning of the array; thus, addregsi

limitations with previous time-varying estimators by piging Trow

a method to automatically identify the 1Z. In this paper we (NI X
propose an extension of the CLAP algorithm to allow accurate o000
estimation of the MFCV irrespective of the the alignment of T l. LdLdhd
the electrode array with respect to the muscle fibres. The ::::
misalignment between the array and the muscle fibres is eolee
modelled as a rotation of the array. This rotation is then eoolee
estimated by applying the CLAP algorithm both along the 'YX
columns of the array and across the rows of the array to i
produce TVD vectors. The angle of rotation is obtained from

the mean angle of the vectors and the process iterated to (a) Perfect Alignment (b) Misalignment

mpr_ove the eStIm_atlon' Fma"y' the e_Stlmate of the MFCV Ilgig. 1. Diagram showing the effect of electrode misaligntnem the delay
obtained by applying the CLAP algorithm along the columnsstimation. The solid red lines indicate the direction of fibres and the
of the rotation corrected array. We validate the proposéashed line the alignment of the array, the blue circles lageetectrodes.
approach using a realistic biological model which allowgais

control the position and alignment of the electrode arrag an W M 4
the properties of the MUs which contribute to the simulated™" || vaw \ﬂb slgnalz
HD-sEMG. J\/\/\ f‘/\p)" \

Signal 2 A Signal 3
[I. DELAY ESTIMATION FRAMEWORK ’ \/\ 4 W ‘J\f\/ wf/\ - /\\I\MW

The problem of estimating MFCV can be formulated ag, s /\[\ JW’\ N ﬂ\ /\{\\//m All-Pass Filter f\] m sl
estimating a TVD between signals obtained from spatially "‘\/ \qf/ J"\/

separated recording electrodes such that oy ml[\ W I M\/\ MW/V ol
g1(t) = f(t) +e(t)

g2 (t) : f(t — T(t)) + €9 (t) Time Time
: Fig. 2. Diagram illustrating the principle of the CLAP algbm. Local regions
gN(t) = f(t - (N - 1)T(t)) + eN(t), (1) on the left-hand side are related to corresponding locat@mmthe right-hand

i . side via a common all-pass filter.
where g, (t) is the signal recorded at the'" electrode at

time ¢, N is the number of electrodeg(t) is the signal
of interest andr(t) is the TVD common to all electrodes. o Local Al il
The additive noisee,(t) are assumed to be i.i.d GaussiaA" common Lo -Pass Filters

processes. However_, thi§ model is based upon the assumptiowe first introduce the CLAP algorithm presented in [12]
of a signal propa_gatlng in the same d|rect|on_as fche eleetr%r estimating a TVD that is common across an ensemble of
array. If we consider a 2'_3 array this assumption is only Val%gnals as described in (1). The algorithm originates frbm t
in the case of perfect a!lgnment petvyeen the cglumns of t al all-pass framework proposed in image registratiogi [1
array ar_1d the muscle fibres as in Fig. la. If, in fact, the%d has previously been applied to 3D MR images [14] and
:CS mlsallg_nmgnt between_ the electrode array and the musﬁ%tein tracking in fluorescence microscopy images [15].
ibres as in Fig. 1b, the signals propagate at an afigtethe The central concept of the CLAP algorithm is that two sets
array. Then the true delay becomes . . :
of signals can be related, on a local level, using all-pates il
7(t) =Tcol(t) + 7 Trow(t) This concept is illustrated in Fig. 2. The CLAP functions by
—|7(t)| (cos 0 + j sin ) (2) @ssuming the. common del_ay signalt) is Ioca!ly constan_t
within the regions marked in yellow. Under this assumption,
meaning the estimate of the delay along the columns is  the constant delay is equivalent to filtering with an allgas
filter (this follows naturally from the Fourier shift thears.
Teal(t) = |7(t)] cos 0 3 Accordingly, within the local regions, the algorithm seeks
which unless§ = 1 results in an underestimate of(t) to estimate an all-pass filtek, with a frequency response
and hence an overestimate of the MFCV. Thus, for accurdtgw) = e 77, as a proxy for determining the delay. An
estimation of the MFCV we require a method which takes in@stimate of the delay is then extracted from the all-pas filt
account not only calculation of the delay but also the angjle §his process is repeated for every sample to obtain an estima
any misalignment between the electrode array and the museighe common TVD signal.
fibres. The method proposed in [12] accurately estimated then more detall, the filteh is determined as follows. First, the
delayT.,; and here we extend this method to jointly estimatall-pass nature of is linearised using the following property:
the delay whilst also correcting for the misalignment. the 27-periodic frequency respondé (w) of any digital all-



pass filter can be expressed as The final element in the CLAP algorithm proposed in [12]
P () is an iterative multi-scale framework. The framework akow
—_— (4) the CLAP to estimate both fast and slowly varying delays.
P (em7%) In brief, although the CLAP is capable of estimating large
where P (e/*) is the forward andP (=) the backward delays, it requires large filters to do so which is equivatent
version of a real digital filtep. This property allows the all- assuming large regions of the TVD are slowly varying. Thus,
pass filtering operation performed hyto be expressed linearly large values of? — the parameter that controls the size of the
as a function ofp filter basis — are used initially to estimate large slowlyyiag
components of the TVD, then smaller values ®fare used

go[k] = nlk] x g1 k] <= p[=k]* g2[k] = p[k] * 91 (K], (5) 14 optain the faster variations in the TVD. At each iterafion
where % is the convolution operator ankl denotes discrete the current estimate of the TVD is used to warp one set of
time. Thus, estimating is equivalent to determining the all-Signals closer to the first set and then the update to the delay
pass filterh however the only constraint anis that it is real estimate is determined by solving (8) using filters specifigd
and has a finite impulse response. a smaller value of?.

The next element is to further reduce the estimation problem
by approximatingy as a linear combination of a few fixed, lll. PROPOSEDAPPROACH

H(w) =

known, real filtersp,,, i.e. In this section we present our method for estimating both
L-1 the TVD, 7(¢), and the misalignment anglé, Our approach
Papplk] = Z apilk], (6) is based on the parametric, vector, model of the TVD defined
1=0 in (2). If we can estimate both(t) andmew(t) then we can
where L denotes the number of filters ang are the coeffi- obtain the misalignment angle by fitting the parametric nhode
cients. The estimation df is thus reduced to determining theto the delay estimates. Once the angle has been determined
L coefficientse;. In terms of the filter basis, a good choicdhen the data can be corrected and the actual TVD obtained.
is a compact, scalable, basis that spans the derivatives dhggordingly, our proposed algorithm comprises of two stage
Gaussian function [13]. For a theoretical foundation on whihe first stage is to obtain an estimate of the misalignment
such a basis is a good choice we refer readers to the analg1§le.fes; Via iterative parametric fitting. The second stage is
presented in [16]. Accordingly, the CLAP algorithm uses th@® correct the data usings; and the estimate the actual TVD
Gaussian function and its first derivatives as a filter bass ( by applying the CLAP algorithm on the rotation corrected
L = 2). These filters are defined as data.
2,0 2 More specifically, in the first stage, we estimatg(t) by
polk] =e™/27 and  pi[k] = kpo[K], (7)  applying the CLAP algorithm along the columns of(tfze array
wheres = R/2— 0.2 and R is the integer half support of the@nd estimateriow(t) by applying the CLAP along the rows
filters. This parameteR is also the upper bound on the siz&f the array. Given these delay estimates, the misalignment
of the delay the CLAP can estimate. angle is calculated by computing the mean angle from the
Putting these elements together, for the local regions ekYD vectors defined in (2). This angle estimate is then used

emplified in Fig. 2 the CLAP algorithm solves the followingl® correct the data for the rotation and the process is refeat
minimisation: to refine the estimate of. This algorithm is illustrated in

No1 ) Fig. 3. At theith iteration, the estimate of the misalignment
min Z Z papp[k] * gn [k] - papp[fk] * gn+1[k]‘ ) (8) angle IS.

=1 kew i = 0;—1 + A0, (10)
where papp[k] = polk] + cip1[k] and W is the local region.
The resulting filter obtained from (8) corresponds to thetregn
sample of the local region. By shifting the local region and )

re-solving (8) to obtain a new all-pass filter and then repgat Al = arg (Z Teol () + JT“’W(t)> : (11)

this process the CLAP estimates a local all-pass filter per ‘

sample. Note that as, = 1 the minimisation in (8) is Note that empirically we have foun& = 4 to be a good
equivalent to solving a linear system of equations with number of iterations to accurately estiméte

unknown, which can be implemented very efficiently using Moving to the second stage of the algorithm, we apply the
convolution and pointwise multiplication [13]. The laseptis CLAP algorithm along the columns of the rotation corrected
to extract the estimate of the TVD signal from the all-pagiata to estimate(¢). Similar to [12], the single differential
filters. Using the all-pass structure of the filters, the gelaf the signals is used in this computation rather than the raw
estimate can be expressed in terms of the impulse resporgeordings, i.7, () = gn+1(t) — gn(t). The reason for this
Papp pre-processing step is that in practice SEMG recordings are
> kpapplk] 9) likely to suffer from common sources of corruption acrods al
>k Papplk] of the channels.

where Af is the circular mean of the TDV vectors:

Test= 2



electrodes. The inclination between the fibres and the tletec

Data In
system can be factored in via a rotation of the transfer fanct
121.0-0 Data, of the detection system. The spatial angular frequenciéisein
Data, = Data In x and z directions, that is, perpendicular and parallel to the
l . direction of fibres aré,, = 27 f, andk, = 2« f,, respectively.
[ Foration Clong g | [Saomastii™!  The output signalky(z), detected along (the direction of the
Ecil el . fibres) withz = 7 can be computed using a special case of
o Trow
\—]l l—l the Radon transform such that
N
> @ Calculate o(z) =" {I(k.)B(k.)}, (12)
Rotation
Yes where
Differential 1 s
Datal -
ataln Blk.) = / Hayo(ka, ks, )70 dk,,  (13)
l 2r J_ o
. 5 and I(k.) is the current density sourc&~' is the 1D
2t inverse Fourier transformf, (ks, kz,0) = Hye(ke,k2) -
s 0,20, Hepe(ks, k2, 0) and H,.(k., k) is the transfer function of the
- . _ , volume conductor andd.,.(k,, k., 0) the transfer function
Overall algorithm. b) Rotat Igorithm at each itera- ) erertE 2 .
() Overall algorithm go)n, otation aigoritm &t €ach T8 ot the detection system with rotatiofi. For full details

of Hye(ks,k.) and Hee(kz, k.,0) we refer the reader to
reference [19].
To obtain the signal in time at the location = z, the

Finally, we end this section with a comment on the rotatiosPatial filter B(k) given by (13) is applied to the current
operation used to correct the data. The rotation itself §NSity source for each instant of time. Which can again be
achieved using high quality interpolation detailed in [1ZB]. calculated via a special case of the Radon transform sut¢h tha

Fig. 3. Flowchart of proposed algorithm.

Depending on the size of the misalignment angle, however, o0 o0 ik ko ket
some channels near the top and bottom edges of the array'”(t - [m [m I(kz, ki) B(k:)e dk. | e’ dky
may need to be extrapolated rather than interpolated — the (14)

data does not exist for the new position of the electrode afteh b — 9 h | lar . q
correcting the array for the rotation. This extrapolatethda wherek, = 2rf, are the temporal angular frequencies an

unreliable and should not be used when estimating the deldl§ function[(ks, k) can be cpmputed via the 2D. Fourier
along the columns and rows. Accordingly, after the rotatio ansform of the current density source. Propagation of the

step in Fig. 3b, we determine which electrodes are re”adfétracellular action potentials (IAPs) cannot just be asgmted

and use only those in the subsequent CLAP computationsas a shift in time as the current density source needs to atcou
for the effects of the finite fibre length. The model assumes
IV. SYNTHETIC HD-SEMG MODEL a progressive generation of the first derivative of the IAP at

the motor endplafeand extinction at the tendons which can

To S|mulat3 realllss;uc SEMG Zlgr_}_ahls a n:jonljel bgsed .(E)n dt% used in conjunction with any mathematical expression of
one proposed in [19] was used. The model as describe e IAP, for further details we again refer the reader to the

Far_ma and Merletti [19] allows the generation of data frorHnetailed description of the model in [19].
a linear array of electrodes and has been extended for the

purposes of this study to a 2D array of electrodes. In brief tiB. Generation of SEMG Signals

model assumes surface electrodes separated from a curreg generate the SEMG signals which are a summation of
density source by a nonhomogen.eous, anisotropic volumg action potentials of many MUs, the recording region ef th
conductor. The volume conductor is represented as a thgggctrodes was determined according to the method proposed
layer (nonhomogeneous) medium comprised of muscle tissHe[20]. The detection volume was defined as the region
(anisotropic), and fat and skin tissues (isotropic). Tlgnal \yithin the muscle where fibres produce action potentials at
recorded at the skin surfac_e is considered to be the resultygd electrode locations which have energy greater than01/10
both spatial and temporal filtering. of the energy of an action potential of a fibre positioned 1
. , mm into the muscle directly below the electrodes. To account
A Generauoh Of Sngle F|bre MUAP_S - for the use of a 2D array the width of the recording region
For each InleIdufil fibre belonging to a specific MU, thevas adjusted according to the number of columns in the array,
spatial component is modelled by the transfer functions pf this case four, and the angle of the array in relation to the
the volume conductor and of the detection system. With
the detectl_on SySt_em tr‘finSfer funCtlon_ taking into accountrhe motor endplate occurs at the neuromuscular junctiorremiie motor
the recording configuration, and the size and shape of th#iron innervates the muscle fibre.




TABLE |
MoODEL CONFIGURATION

Tenqon Tent_ion
60 Reglon 60 Region Parameter Value
Recording Parameters
40 ¢ 40 | - - -
Recording configuration Monopolar
- 20 —~ 20 . Columns 4
E | \E, | Array size ROWS 8
£ 0 -?gf: aen £ 0 -?gf: aten Electrode shape Circular
c C ° . .
S 20 geee 3 20 i Electrode size Diameter 3 mm
. potrodes Flectrodes Interelectrode distance 5 mm
®
-40 -40 Sampling rate 2 kHz
60 -60 o Recording length 5 sec
e ‘ S —caion Distance centre of array to I1Z -32.5 mm
20 O 20 20 O 20 Wi 0°
Width (mm) Width (mm) Angle between array and fibres MI;X 300

(a) Electrodes inline with fibres.  (b) Electrodes at 80° to fibres.

- . . . . . . Muscle Parameters
Fig. 4. Model diagram illustrating the recording configioatfor two different

electrode placements. IZ spread 10 mm
; Tendon region spread Above IZ 10 mm
Recording Region Electrodes ?\" Layer Below 1Z 10 mm
€ 4 e — i . Above 1Z 65 mm
£ ‘ Layer Average semi-fibre lengths Below |2 65 mm
%_ -4 MUs Thickness of fat layer 3 mm
0 3 20 -10 0 10 20 30 Thickness of skin layer 1 mm
Width (mm) . . Muscle 200 fibres/mih
Fibre density MU 20 fibres/mnd
(a) Electrodes inline with fibres. .
Number of motor units 150
. Recording Region Electrodes ?ﬂ Layer Number of fibres per MU mm fgo
€ 4 P ax
E L Fixed 4 m/s SD 0.3 mis
£ 4 ;»!,L’ CV distribution TV Inital 5 m/s SD 0.3 m/s
i “——MUs TV Final 4 m/s SD 0.7 m/s
Q 3 20 10 0 0 20 30 CV limits Min 2 mis
Width (mm) Max 7 m/s
(b) Electrodes at 80° to fibres. Firing rate 10 Hz SD 15% IPI
Fig. 5. Model diagram illustrating the recording region anwbtor unit IZ - innervation zone; MU - motor unit; CV - conduction velogi
locations for two different electrode placements. TV - time-varying; SD - standard deviation; IPI - interpulisgerval.

fibres, in this case a maximum angle30f was used. To allow

comparison of the effect of the angle of the array the same L
width of the recording region was used for all experiments.m/s and a standard deviation of 0.7 m/s. In both cases the

The position of the electrode arrays relative to the simaaiatv‘iilues Of_ the CVs were fruncated to between 2 and 7 m/s 1o
muscle for angles of° and 30° are shown in Fig. 4. An give realistic values. The CVs of the MUs were then sorted

example of the size and location of the different motor uni%ccordmg to size with the smallest MUs also having the lawes

are show in Fig. 5. For each MU the circular cross-section IV
area was determined by the number of fibres and the densityfhe corresponding signals recorded at each of the electrode
of the fibres within the MU. The total number of MUs wasvere generated based on the combination of the signals from
set to give realistic values of the overall muscle fibre dgnsi all of the MUs which are in turn the summation of the signals
Having obtained the MU sizes and positions, the CV dafenerated by each of the fibres belonging to the MU. A fixed
the MUs were determined according to either a fixed or timeet of 100 realizations of the MU sizes and positions werd use
varying scenario. For the fixed scenario the CV were dravior all of the simulations and the MUAPs were calculated as
from a Gaussian distribution with a mean of 4 m/s and standandSection IV-A for each of the angle and CV scenarios. The
deviation of 0.3 m/s. Whereas for the time-varying scenargignals were generated using fixed firing rate for all of the
the initial distribution had a mean of 5 m/s and a standaMUs. All of the model parameters used in the simulations are
deviation of 0.3 m/s and the final distribution a mean of 8ummarized in Table I.
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(a) Error in the estimates of the fixed MFCV.

V. SIMULATIONS 2
A. Ensemble MFCV

Before estimating the MFCVs we needed to consider how
the superposition of the MUs affects the MFCV observed at
the electrodes. Although the CVs of each MU were drawn
from a Gaussian distribution the MFCV measured from the
SsEMG does not directly correspond to this distribution. As

1.5+

)

Estimation Error

smaller MUs have slower CVs and larger MUs faster CVs 05
the distribution of the MFCV becomes skewed towards the
faster CVs. At the same time the location of MUs within the o- ‘ ‘ :
. ) o 0 5 10 15 20 25 30
recording region affects how great a contribution they ntake Misalignment Angle
the overall SEMG signal. To provide an estimate of the overal (b) Error in the estimates of the misalignment angle.

ensemble MFCV as observed _at the surface of the skin W . 7. Average errors for increasing misalignment anglib fiked CV. Error
calculated the energy of the signals produced by each s indicates™ and 95t quantiles.

across all of the electrodes. The contributions of the CVs of

each MU were then calculated by weighting the CV according

to the proportion of the total energy of all of the MUs the MWemonstrate that estimates were not only accurate andtrobus

provides, such that the weighted CMC'V is given by but also the errors were relatively consistent across tffierdi
e1 es €150 ent misalingnment angles. The corresponding estimateseof t
wCV =CVi + OV + ...+ OViso—=, (15)  misalignment angles are shown in Fig. 7b, again the average

MAE was consistent across angles with the results indigatin

where 95% of the estimates have an error of less than 2 degrees.
150 For the method to be applicable in a wider range of
E= Z e, (16) scenarios it must also be capable of solving the TVD problem
i=1 in the context of misalignment of the electrode array. FégRa

ande; is the energy of the signals produced by MidndC'V;  gives an example of the distribution of the time-varying CVs
the corresponding CV. Figure 6 illustrates the contritngio from one of the set of MUs used to test our proposed
of the MU energies for different CVs as a proportion ofPproach. As well as the mean and standard deviation of the
the total MU energy. As can be seen this distribution is r@dstribution, the range of the CVs are displayed along with t
longer Gaussian and the weighted CV gives a more accurét@ighted CV. Figure 8b shows the estimate of the ensemble
representation of the distribution of the energies thamtean MFCV obtained using the CLAP algorithm, as can be seen
CV. Therefore, the weighted CV was used in the subsequéh@ estimate accurately tracks the time-varying MFCV with a
analysis as a ground truth measure of the ensemble MFMAE of 0.06 m/s. The distribution of the MAEs for the time-
against which to compare the estimates obtained from tWarying CVs are shown in Fig. 9. The average errors are again

CLAP. consistent across the range of misalignment angles althoug
o with slightly higher values than for the fixed MFCV. As with
B. Accuracy of Ensemble MFCV Estimation the estimates of the MFCYV, the estimates of the misalignment

Using the measure of the ensemble MFCV as recordadgle are consistent across the angles with average effrors o
by the sEMG described above we then calculated the mdasas than one degree.
absolute error (MAE) between the ensemble MFCV and the
estimates of the fixed CV obtained from the CLAP algo-
rithm. Figure 7a shows the average MAE obtained from 100 The requirement to accurately place electrodes whilshgett
realizations for misalignment angles up39°. The results up for SEMG recordings is a limitation if it is to be used in

VI. CONCLUSIONS
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Fig. 8. An example of the distribution of the MU CVs for onelieation and
the corresponding MFCV estimate obtained from the CLAP ritlgm.
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Fig. 9. Average errors for increasing misalignment angléh vime-varying
CV. Error bars indicat&s™ and 95" quantiles.

a wider range of scenarios. In this paper, we have presented
an extension of our earlier work which estimates TVDs for
the purposes of calculating MFCV. Here we take into account
the effect of misalignment between the muscle fibres and
the electrode array on the delay estimation. By modelling
the misalignment as a rotation of the array and iteratively
fitting we can estimate the misalignment angle and hence,
improve the TVD estimation. Results show that the proposed
method accurately estimates both the misalignment angle an
the true delay in the direction of the fibres. However, we feel
these results can be improved further by applying parametri
iterative fitting as described in [21] to the delay estimatio
Our approach provides a more practical solution to MFCV
estimation which allows accurate estimates without thednee
for perfect alignment of the array with the muscle fibre.

REFERENCES

[1] M. Hakonen, H. Piitulainen, and A. Visala, “Current statf digital
signal processing in myoelectric interfaces and relateplicgiions,”
Biomedical Sgnal Processing and Control, vol. 18, pp. 334—-359, 2015.

[2] R. A. Sherman, “Instrumentation methodology for redogd and
feeding-back surface electromyographic (SEMG) signaksgpl. Psy-
chophysiol. Biofeedback, vol. 28, no. 2, pp. 107-119, 2003.

[3] H. J. Hermens, B. Freriks, C. Disselhorst-Klug, and GuR&Devel-
opment of recommendations for SEMG sensors and sensompate
procedures,” J. Electromyogr. Kinesiol., vol. 10, no. 5, pp. 361-374,
2000.

[4] R. Chowdhury, M. Reaz, M. Ali, A. Bakar, K. Chellappan,dah. Chang,
“Surface electromyography signal processing and claasidic tech-
nigues,” Sensors, vol. 13, no. 9, pp. 12431-12466, 2013.

[5] M. J. Zwarts, G. Drost, and D. F. Stegeman, “Recent pregrie
the diagnostic use of surface EMG for neurological diseases.
Electromyogr. Kinesiol., vol. 10, no. 5, pp. 287-291, 2000.

[6] D. Farina and R. Merletti, “Estimation of average musdiber
conduction velocity from two-dimensional surface EMG netiogs,”

J. Neurosci. Methods, vol. 134, no. 2, pp. 199-208, 2004.

[7] E. Schulte, O. Miltner, E. Junker, G. Rau, and C. Disseh&lug,
“Upper trapezius muscle conduction velocity during fatign subjects
with and without work-related muscular disorders: a noragive high
spatial resolution approachEur. J. Appl. Physiol., vol. 96, no. 2, pp.
194-202, 2006.

[8] C. Gronlund, N.Ostlund, K. Roeleveld, and J. S. Karlsson, “Simulta-
neous estimation of muscle fibre conduction velocity and aleuBbre
orientation using 2D multichannel surface electromyogtaked. Biol.
Eng. Comput., vol. 43, no. 1, pp. 63—70, 2005.

[9] A. Boualem, M. Jabloun, P. Ravier, and O. Buttell, “Legee

polynomial modeling of time-varying delay applied to sedaEMG

signals — derivation of the appropriate time-dependent §RBignal

Process., vol. 114, pp. 34-44, 2015.

P. Ravier, D. Farina, and O. Buttelli, “Time-varying ldg estimators

for measuring muscle fiber conduction velocity from the acef elec-

tromyogram,” Biomed. Sgnal Process. Control, vol. 22, pp. 126-134,

2015.

S. H. Roy, C. J. De Luca, and J. Schneider, “Effects oftetele location

on myoelectric conduction velocity and median frequendyreges.,”

J. Appl. Physiol., vol. 61, pp. 1510-1517, 1986.

C. Gilliam, A. Bingham, T. Blu, and B. Jelfs, “Time-vang delay

estimation using common local all-pass fitlers with appiwato surface

electromyography,” irProc. |EEE Int. Conf. on Acoustics, Speech and

Sgnal Processing (ICASSP), Calgary, Canada, 2018, pp. 841-845.

C. Gilliam and T. Blu, “Local all-pass geometric defations,” IEEE

Trans. Image Process., vol. 27, no. 2, pp. 1010-1025, 2018.

C. Gilliam, T. Kustner, and T. Blu, “3D motion flow estation using

local all-pass filters,” irProc. |EEE Int. Symp. on Biomedical Imaging

(IsBl), Prague, Czech Republic, 2016, pp. 282-285.

J. Li, C. Gilliam, and T. Blu, “A multi-frame optical flovepot tracker,”

in Proc. IEEE Int. Conf. on Image Processing (ICIP), Québec City,

Canada, 2015, pp. 3670-3674.

[20]

[11]

[12]

(23]

[14]

[15]



[16]

[17]

(18]

[29]

[20]

[21]

T. Blu, P. Moulin, and C. Gilliam, “Approximation ordesf the LAP
optical flow algorithm,” inProc. IEEE Int. Conf. on Image Processing
(ICIP), Québec City, Canada, 2015, pp. 48-52.

P. Thévenaz, T. Blu, and M. Unser, “Interpolation eitdd,” |EEE
Trans. Med. Imag., vol. 19, no. 7, pp. 739-758, 2000.

T. Blu, P. Thévenaz, and M. Unser, “MOMS: Maximal-ordeterpola-
tion of minimal support,”|[EEE Trans. Image Process., vol. 10, no. 7,
pp. 1069-1080, 2001.

D. Farina and R. Merletti, “A novel approach for precsenulation of
the EMG signal detected by surface electrodd&EE Trans. Biomed.
Eng., vol. 48, no. 6, pp. 637-646, 2001.

D. Farina, M. Fosci, and R. Merletti, “Motor unit rectoient strategies
investigated by surface EMG variables]’ Appl. Physiol., vol. 92, no.
1, pp. 235-247, 2002.

X. Zhang, C. Gilliam, and T. Blu, ‘“Iterative fitting afteelastic
registration: An efficient strategy for accurate estintatad parametric
deformations,” inProc. IEEE Int. Conf. on Image Processing (ICIP),
Beijing, China, 2017, pp. 1492-1496.



