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Abstract—Delay estimation is a common problem in signal
processing which becomes particularly challenging when the
delay is time-varying and the recorded signals are non-stationary.
While methods for time-varying delay (TVD) estimation exist
many of these are based on maximum likelihood estimation and
thus are not well suited to real-time implementation. In this
paper we present a method for TVD estimation which is suitable
for real-time non-stationary applications. The proposed method
combines local all-pass (LAP) filters with a Kalman filter. By
using measurement fusion to combine the outputs of several LAP
filters in the Kalman filter we can accurately track TVDs whilst
allowing for fast and efficient parallel computation. Illustrative
simulations demonstrate the effectiveness of the proposed ap-
proach.

I. INTRODUCTION

Situations where two or more time-dependent signals are

recorded from different sensors occur in numerous appli-

cations, such as communications [1], radar [2], sonar [3]

or the monitoring of complex processes such as biological

systems [4]. Often this results in the need to estimate the

delay either in receiving the transmitted signal or between

receiving signals at spatially separated sensors. For example,

delay estimation can occur as a pre-processing step that allows

the signals to be aligned or synchronised for further analysis.

Alternatively, the estimation of the delay itself can be key to

the application as it sheds light on the underlying physical

process. Thus, the estimation of a constant delay between two

signals is a well studied problem in signal processing [5].

However, as many applications comprise measuring dynam-

ical systems, the delay in question can be time-varying in

nature [6], [7]. Accordingly, in this paper, we are interested

in the estimation of a time-varying delay (TVD) between two

signals. The TVD estimation problem can be described by the

delay between two spatially separated sensors (or transmitter

and receiver) such that

x1(t) = f(t) + e1(t)

x2(t) = f
(

t− τ(t)
)

+ e2(t) (1)

where x1(t) and x2(t) are the signals at each sensor at time

t, f(t) is the signal of interest and τ(t) is the TVD signal to

be estimated. Each signal is corrupted by additive noises e(t)
that are assumed to be i.i.d Gaussian processes.

For many delay estimation problems, such as in radar

and acoustic applications, we require real-time estimates of

the delay. Previously we have presented a multiscale Local

All-Pass (LAP) framework for TVD estimation which was

shown to be both accurate and robust [8], [9]. This framework

combines multiple LAP filters with different supports and is

thus able to track both small and large delays as well as

both fast and slowly varying delays. However, although this

approach has a low overall computational cost, the multiple

filters are combined sequentially, with post-processing at each

stage. Thus, the entire input signals need to be obtained before

processing. Importantly, this characteristic is a product of the

multiscale architecture not the actual LAP algorithm; the LAP

filters themselves require only a short time window from which

to estimate the delay at each sample. This short time window

combined with the ability to efficiently implement the com-

putation using convolution and pointwise multiplication [10]

make the LAP algorithm an ideal choice for applications that

require real-time embedded system solutions. Accordingly,

there is a need for an implementation of the LAP algorithm

that takes advantage of the local nature of the LAP filters

whilst maintaining the advantages of the previously proposed

multiscale framework.

In this paper we propose to combine LAP filters for TVD

estimation with a Kalman filter to provide accurate tracking

of the delay. The proposed LAP + Kalman filter combines

the benefits of both filters: by using a single LAP filter, we

can take full advantage of the speed of computation of the

LAP algorithm; whilst the use of a Kalman filter on the

output of the LAP filter can improve the accuracy of the

estimation. Furthermore the proposed LAP + Kalman filter

can use multiple LAP filters, each with different support, to

provide different scales, hence preserving the strengths of the

multiscale framework. Unlike the multiscale LAP framework

these single scale LAP filters can be implemented in parallel to
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Fig. 1. Diagram illustrating the principle of the LAP algorithm. The local
region on the left-hand side is related to the corresponding location on the
right-hand side via an all-pass filter.
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Fig. 2. Flowchart of the single scale LAP algorithm. Note that the ’Estimate Local All-Pass Filter’ block equates to solving (4) and the ’Estimate Delay’
block equates to solving (6).

maintain the computational speed. The single scale LAP filters

can then be combined using a measurement fusion Kalman

filter to provide a better estimate of the delay than any of

the individual LAP + Kalman filters. Simulations illustrate the

efficiency and speed of this proposed combination.

II. LOCAL ALL-PASS FILTERS FOR DELAY ESTIMATION

The multiscale LAP framework for TVD estimation was

introduced in [8], here we will briefly outline the general LAP

algorithm [10] and its use for delay estimation. The main aim

of the algorithm is to relate a local region in one signal to the

corresponding region in another signal using an all-pass filter;

an illustration of which is shown in Fig. 1. This aim follows

from the observation that if the TVD signal τ(t) is constant

within a local region then, due to the Fourier shift theorem, a

constant delay is equivalent to filtering with an all-pass filter.

Thus, the LAP algorithm seeks to estimate an all-pass filter,

h, within the local region with a frequency response H(ω) =
e−jτω . An estimate of the delay is then extracted from the

all-pass filter. This process is repeated for every sample, using

a sliding-window principle, to obtain a per sample estimate of

the TVD signal.

Formally, the estimation of a single filter, h, is as follows.

First, for any digital all-pass filter, its 2π-periodic frequency

response, H(ω), can be expressed as

H(ω) =
P
(

ejω
)

P (e−jω)
, (2)

where P
(

ejω
)

is the forward and P
(

e−jω
)

the backward

version of a real digital filter p. Application of this property

results in the all-pass filtering relationship presented in [10]

whereby the all-pass filtering operation performed by h can

be expressed linearly as a function of p:

x2[k] = h[k] ∗ x1[k] ⇐⇒ p[−k] ∗ x2[k] = p[k] ∗ x1[k], (3)

where ∗ is the convolution operator and k denotes discrete

time. The estimation problem is then further reduced by

approximating p as a linear combination of a few fixed, known,

real filters pn, i.e. a filter basis. For this paper, we use the

filter basis proposed in [8], [10] that comprises a Gaussian

function and its first derivative. Such a basis is both compact

and scalable, and offers good approximation properties, see the

analysis presented in [11] for more details. Accordingly, using

(3) and the basis approximation, the LAP algorithm solves the

following minimisation:

min
c

∑

k∈W

∣

∣

∣papp[k] ∗ x1[k]− papp[−k] ∗ x2[k]
∣

∣

∣

2

, (4)

where W is the local region, c is the coefficient of the filter

basis and papp is the filter basis approximation of p defined

as:

papp[k] = e−k2/2σ2

+ c k e−k2/2σ2

. (5)

The variable σ controls the shape of the filters and is defined

as σ = M/2− 0.2 where M is the integer half support of the

filters.

The resulting filter obtained from (4) corresponds to the

central sample of the local region. Using a sliding-window

principle and solving (4) in each window, the LAP estimates

a local all-pass filter per sample. Note that, although such

an operation may seem costly, the minimisation in (4) is

equivalent to solving a linear system of equations with one

unknown and the shifting operation can be implemented using

convolution, thus the algorithm can be implemented very

efficiently using convolution and pointwise multiplication [10].

The final step in the algorithm is to obtain the estimate of

the TVD signal from the all-pass filters. Using the all-pass

structure of the filters, the delay estimate can be expressed in

terms of the impulse response papp [10]:

τest = 2

∑

k kpapp[k]
∑

k papp[k]
. (6)

The complete LAP algorithm is shown in Fig. 2, the

algorithm is controlled by two input parameters, the size of the

filter basis, M and the size of the window, w, which defines the

local region. The size of the delay this algorithm can estimate

is dependent upon the size of the filter basis; logically this

parameter is the upper bound on the size of the delay the

LAP filter can estimate. Thus, to estimate large delays the LAP

algorithm requires large filters and as the filter size increases

so too does the size of the window, w. The window size

defines the region for which the TVD is assumed to be locally

constant. This is equivalent to assuming a large delay is slowly

varying. However, the window size also affects the accuracy

of the delay estimate; solving (4) is equivalent to solving a

linear system of equations thus using a larger window size

is equivalent to having an over-determined system, which is

useful in noisy conditions.
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Fig. 3. Flowchart of the multiscale LAP algorithm. The ’Single Scale LAP’ block equates to the flowchart illustrated in Fig. 2. Note that m is the scale index
for the algorithm and ∆τ is the refinement of the delay from the previous estimate.

The minimum size of window is dictated by the size of the

LAP filter, for a given half support, M , the minimum window

size is

wmin = 2M + 1. (7)

However, there is no theoretical limit to the maximum size

of the window. Thus a trade-off exists: larger windows enable

more accurate delay estimation but at the cost of restricting

the amount of time-variation in the delay. In contrast, smaller

windows allow faster time-variation but can result in noisy

delay estimates. Smaller windows also restrict the size of the

delay which can be estimated by restricting the LAP filter size.

Previously, to enable the estimation of both quickly and slowly

varying delays, we proposed a multiscale framework for TVD

estimation [8] which implements several different values of

M sequentially, as illustrated in Fig. 3.

III. KALMAN FILTER FUSION

The multiscale framework for TVD estimation proposed

in [8] operates in an iterative manner. First using the largest

value of M to estimate the delay and then using this estimate

to warp the delayed signal closer to the original signal. The

process is then repeated with the next value of M and so on for

each of the desired scales. While this provides accurate results,

it also requires the whole signal in advance to perform the

post-processing and alignment at each stage of the algorithm,

as shown in Fig. 3.

In contrast, using single scales of the LAP filter, as shown

in Fig. 2, does not have the same restriction and outputs

a per sample estimate of the delay as only the samples

used in the local region, W are required. By specifying the

support of the LAP we define the maximum size of the delay

which can be estimated. Note that the choice of M can be

informed by our prior knowledge of the application at hand.

Thus, the remaining parameter is the choice of w, the size

of the local region. As previously highlighted, this has a

trade-off: the accuracy of the estimate versus the amount of

variation permissible in the delay. Ideally we want to allow

the maximum possible variation whilst maintaining accuracy.

To enable the use of shorter window sizes, in this paper

we combine the LAP filter with a Kalman filter [12] as

illustrated in Fig. 4. We assume the delays estimated by the

LAP algorithm are noisy measurements of the true TVD and

use the Kalman filter’s ability to model both this noise and

structure of the TVD to obtain a more accurate estimate of

the true delay. Hence estimating the TVD using a LAP +

Kalman filter allows us to reduce the size of the local region

in the LAP algorithm to that of the minimum possible for the

specified size of delay (7) without significant loss in accuracy.

To implement the Kalman filter the state vector, based on

the LAP estimate of the delay, τLAP, is assumed to be

τ k =





τk
τ̇k
τ̈k



 , (8)

with the process governed by the following equations:

τ k =Akτ k−1 + uk (9)

τLAPk
=Ckτ k + vk, (10)

where u and v are independent Gaussian noise processes. For

a given sampling period ∆t, the transition and measurement

matrices are given by

Ak =





1 ∆t ∆t2/2
0 1 ∆t
0 0 1



 (11)

Ck =
(

1 0 0
)

(12)

respectively. Using these equations we can define the Kalman

filter updates as [13]

τ k|k−1 =Akτ k−1 (13)

Pk|k−1 =AkPkA
T
k +Qk (14)

K =Pk|k−1C
T
k

(

CkPk|k−1C
T
k +Rk

)−1
(15)

τ k =τ k|k−1 +K
(

τLAPk
− Ckτ k|k−1

)

(16)

Pk =(I −KCk)Pk|k−1, (17)

where P is the state estimate covariance matrix, K is the

Kalman gain, and Q and R are the process and measurement

noise covriances respectively.

The LAP + Kalman filter combination provides an accurate

estimate of the delay but is still limited by the size of the

half support of the LAP filter. To overcome this and gain the

benefits of the smaller window size whilst also maintaining
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Fig. 4. Flowchart of the LAP + Kalman algorithm.
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the advantages of the multiscale LAP, we propose to fuse

multiple LAP filters using a Kalman filter. In this way different

values of M can be implemented separately as demonstrated

in Fig. 5, and crucially, unlike the multiscale LAP these filters

can be implemented in parallel providing fast and efficient

computation.

Several approaches to fusion using Kalman filters have been

proposed, primarily state vector fusion which produces filtered

state vectors for each of the measurements and then combines

to give an updated estimate [14] and measurement fusion

which first combines the measurements and then updates the

state vector [15]. Despite modifications to state vector fusion

which take into account the correlation of the process noise,

measurement fusion has been shown to be preferable to state

vector fusion [16]. Measurement fusion can be obtained either

by augmenting the observation vector [15] or by weighting

the observations [16]. In [15] the two were shown to be

functionally equivalent for identical measurement matrices (as

is the case here). For simplicity, we have implemented an

augmented observation as follows:

τLAPk
=
[

τ1LAPk
. . . τNLAPk

]T
(18)

Ck =
[

C1
k . . . C

N
k

]T
(19)

Rk =diag
[

R1
k . . . R

N
k

]

, (20)

where N is the number of LAP filters to be fused. Having

formed the augmented measurements the Kalman filter can

then be implemented as before (14)–(17).

IV. SIMULATION RESULTS

A. Comparison with Multiscale LAP

To test the efficacy of the LAP + Kalman combination

we first compared the results with those obtained from the

multiscale LAP. In [8] the multiscale framework was tested

on synthetic signals which have previously been used in the

investigation of muscle fibre conduction velocity from surface

electromyography signals [17], [18]. In brief, the first channel

is generated by filtering white Gaussian noise through a FIR

filter with a known spectrum and the delayed version obtained

by interpolating the first channel with the desired delay, τ(t).
In this case the delay was represented as the reciprocal of

a sinusoid. The signals are then corrupted by additive white

Gaussian noise and low-pass filtered to simulate the response

of the acquisition device. Previously, the multiscale framework

has been shown to provide a more accurate and robust estimate

of the TVD for this type of signal compared to alternative

methods [8].

Figure 6 provides an example of the delay estimates ob-

tained from 5 seconds of synthetic data with a sampling rate

Fs = 2048Hz using a single scale LAP algorithm with M = 8
(w = 2M + 1 in all simulations) and the LAP + Kalman

filter. As can be seen the addition of the Kalman filters gives

a smoother estimate of the delay than the LAP alone whilst

also providing accurate tracking of the TVD. Comparing the

LAP and the LAP + Kalman now with the multiscale LAP with

M = {2, 4, 8} and w = 512 we can observe that the multiscale

LAP provides a more accurate estimate of the delay, as is to

be expected. Figure 7 shows the average mean absolute error
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Fig. 6. Example delay estimates from the LAP and LAP + Kalman for different noise levels. Row 1 SNR = 10dB, row 2 SNR = 20dB, row 3 SNR = 30dB,
row 4 noiseless data. Left-hand column LAP and right-hand column LAP + Kalman.

obtained from 100 realisations of the synthetic data. Although

the multiscale LAP is more accurate than the LAP + Kalman

filter, the results from Fig. 6 and Fig. 7 indicate that the LAP

+ Kalman is still a good estimator of the TVD.

The notable advantage of the LAP + Kalman filter arises

in the computation, Table I provides the average computation

time to process 5 seconds of data and the latency of the

algorithms. Note that we consider latency to be the time taken

to provide an estimate of the current delay; it is not a product

of hardware speed rather it dependents on the algorithm’s

architecture. While the LAP + Kalman and multiscale LAP

have very similar computation time, because of the alignment

and post-processing performed at each iteration of the multi-

scale LAP the algorithm requires the full 5 seconds of data

to perform the processing. On the other hand the LAP, and

hence the LAP + Kalman filter, can start outputting per sample

delay estimates as soon as they have the first window of data,

which results in a latency of only 8.301ms (w = 17 samples

at Fs = 2048Hz).

B. Speech

To provide a more realistic example we next constructed an

example using a real world signal and introducing a known
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TABLE I
COMPARISON OF TOTAL COMPUTATION TIME TO PROCESS 5

SECONDS OF DATA AND ALGORITHM LATENCY FOR THE LAP,
LAP + KALMAN AND MULTISCALE LAP.

Computation Time (ms) Latency (ms)

LAP 2.9 8.3

LAP + Kalman 34.5 8.3

Multiscale LAP 35.9 5000.0

All calculations performed in MATLAB (Mathworks inc.) on a
HP Workstation Intel Xeon W2133 3.6 6 Core 64GB RAM.

delay. To illustrate the advantage of using the measurement

fusion with the Kalman filter combined with the speed of

computation and the short latency of the LAP we used a short

610.4ms speech signal (Fig. 8a) with 5000 samples (sampling

rate of 8192Hz). Similar to the approach in [6] we introduce

a linearly decreasing delay in this case decreasing from 8

samples to 1.5 samples until 3500 samples and then constant

for the remaining samples (Fig. 8b). The speech signal itself

is non-stationary and comprised of several different frequency

components and by introducing a non-constant delay the

estimation problem is not straightforward as can be seen from

the illustrative segments of the original and delayed signals

shown in Fig. 9.

Due to the complexity of the estimation problem in this case

we implemented two LAP filters one with a value of M = 8
and the other with M = 16, the outputs of which were then

fused using the Kalman filter. Figure 10 shows the estimates

obtained by using the individual LAP + Kalman filters and

the output of Kalman filter performing measurement fusion

on the two LAP filters. All three algorithms successfully track

the changes in the delay with Table II giving the associated

mean absolute errors. Table II demonstrates the improvement

in the delay estimation obtained by using the LAP + Kalman

compared to the LAP alone and shows the fused algorithm

provides smaller errors than either of the individual LAP +

Kalman filters. However, as can be seen from Fig. 10 the errors

in the estimation from the fused algorithm are still relatively

larger at the start of the signal and around the 350-400ms. If
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Fig. 8. (a) Original speech signal. (b) The introduced delay.
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Fig. 9. Segments of the original and delayed speech signals. (a) 50–150ms
corresponding to delays of 7.2–5.7 samples. (b) 500–600ms corresponding to
a constant delay of 1.5 samples.

we consider the same regions in the speech signal, shown in

Fig. 8a, it can be noted that these correspond to the smaller

low amplitude sections of the signal where the difficulty in

the estimation of the delay increases. Despite this the overall

error obtained from the fused algorithm is still comparatively

small.

V. CONCLUSIONS

In this paper we have presented an algorithm for delay

estimation which combines local all-pass filters with a Kalman
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TABLE II
MEAN ABSOLUTE ERRORS OBTAINED FROM THE LAP AND LAP +

KALMAN FILTERS WITH M = 8 AND M = 16, AND THE FUSED

COMBINATION OF THE TWO.

LAP LAP + Kalman

M = 8 1.001 0.408

M = 16 0.620 0.509

fused – 0.310

filter to track time-varying delays. While the results presented

here do not provide the same level of accuracy as our

previously proposed multiscale framework they illustrate that

the proposed algorithm can still obtain acceptable errors with

a much lower latency. The proposed LAP + Kalman filter

can also take advantage of measurement fusion using the

Kalman filter to combine the estimates of multiple single

scale LAP filters to provide a better estimate than any of

the constituent filters. The key advantage of the proposed

approach is in providing an alternative implementation which

can take advantage parallel processing to give a fast and

efficient implementation for real-time applications.
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