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Abstract: This paper considers the 2D anchorless localization problem for sensor networks in1

GPS-denied environments. We present an efficient method, based on the multidimensional scaling2

(MDS) algorithm, to estimate the positions of the nodes in the network using measurements of the3

inter-node distances. The proposed method takes advantage of the mobility of the nodes to address4

the location ambiguity problem, i.e. rotation and flip ambiguity, that arises in the anchorless MDS5

algorithm. Knowledge of the displacement of the moving node is used to produce an analytical6

solution for the noise-free case. Then a least squares estimator is presented for the noisy scenario7

and the associated closed-form solution derived. Simulations show that the proposed algorithm8

accurately and efficiently estimates the locations of nodes, outperforming alternative methods.9

Keywords: localization; sensor network; multidimensional scaling; position ambiguity10

Key Notation11

The following variables are used in this manuscript:12

13

di,j The distance between nodes i and j

D Euclidean distance matrix given the collection of locations S
M(θ) Rotation matrix for given angle θ

S i = [xi, yi]
T True coordinates of the ith node

S = [S1, · · · ,Sn] Collection of the true locations of all of the nodes

S∗ Output of multidimensional scaling given the distance matrix D

S∗∗ Rotation of the output of multidimensional scaling, S∗, using rotation matrix M(θ) with
the angle, θ, obtained from the function θR(S∗, ∆S ′, D′)

θR(S∗, ∆S ′, D′) Function to solve the possible rotation angle between the true positions and S∗ using the
associated parameters

ψ The diagonal elements of STS

14

15

The following notation is used to denote changes in the variables:16

17

(·)′ The parameter after the first movement

(·)′′ The parameter after the second movement

∆(·)′ The change in the parameter after the first movement

∆(·)′′ The change in the parameter, relative to the original, after the second movement

18

19
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For example S ′ is the collection of true locations of all of the nodes incorporating the changes in position, i.e.20

S ′ = S + ∆S ′, similarly S ′′ = S + ∆S ′′. It should be noted that S ′′ = S + ∆S ′′ can be re-formulated as21

S ′′ = S ′ + ∆S ′′ with ∆S ′′ , ∆S ′′ − ∆S ′.22

1. Introduction23

Due to the increased availability of low-cost low-power sensors, smart sensors and24

multi-functional sensors, wireless sensor networks are becoming increasingly ubiquitous [1–4].25

Wireless sensor networks are being utilized in a diverse array of tracking and monitoring applications26

from environmental [5] and health monitoring [6] to traffic [7] and border surveillance [8]. In27

many of these applications the nodes in the network are mobile and knowledge of their positions28

is a prerequisite for completing the task, and crucial for information sharing, data collection and29

scheduling [9]. For example, if the locations of the nodes are unknown or significantly incorrect,30

the data they have collected from surrounding environment, such as wildlife [10] or weather31

information [11], will be useless since the positional information is not available.32

To provide the required positional information, localization algorithms estimate the locations33

of unknown nodes in the network using the positions of a known subset of the nodes. The most34

widely used localization techniques in the literature are distance-based localization algorithms such as35

trilateration, radio interference positioning system (RIPS) [12] and the Hop-Distance algorithm [13].36

These algorithms estimate the inter-node distances and require anchors, that is nodes with known37

locations, to provide the locations of the remaining nodes. The location of the anchor nodes is accessed38

via global positioning system (GPS) or a priori information [12,14–18].39

While, GPS is widely used in locating unknown nodes in many situations such as indoor, urban40

and forest environments, the positions of nodes are difficult to obtain from GPS [19–22]. In this case,41

the anchors are absent or the positions of the anchors are not available, and the above algorithms42

cannot be applied. This is widely regarded as the most significant challenge in the positioning and43

navigation field [23–25]. Therefore, there is an increasing need for anchorless localization of sensor44

networks for use in GPS-denied or contested environments. Using the movement of nodes and the45

inter-node communication, cooperative localization can be leveraged to solve this problem. This46

scenario arises in the field of robotics swarms, especially in the navigation and formation control of47

unmanned aerial vehicles swarms under a GPS-denied environment [20,25–27].48

In practice, cooperative localization can be achieved by utilizing the inter-node distances [28].49

However, relative localization only gives node positions which satisfy the distance constraint, meaning50

there could be ambiguity problems, i.e. ambiguity due to rotation and/or flip [29]. A widely used51

algorithm capable of tackling the anchorless localization problem is the multidimensional scaling52

(MDS) algorithm [30–35]. The aim of MDS is to represent the similarity (or dissimilarity) of high53

dimensional data in a lower dimensional map which describes the relative distances between pairs of54

objects (in this case sensor nodes). Like other relative localization methods MDS can also be subject55

to the ambiguity problem, hence, algorithms have been proposed to attempt to address this problem.56

In [36] a MDS-based algorithm using moving nodes is presented which constructs a cost function57

involving velocities and inter-node distances of all nodes at two consecutive time instants. In [37],58

a similar algorithm is proposed to solve the anchorless localization problem for nodes which can59

estimate the position via a nonlinear least square estimator, however in this case only one node is60

moving.61

In this paper, we present an efficient algorithm for anchorless cooperative localization based on62

MDS. The algorithm mitigates the rotation and flip problems by taking advantage of the movement63

and inter-node communication of the mobile nodes. Unlike existing algorithms which operate in an64

iterative manner the proposed algorithm presents a closed-form solution which is computationally65

efficient. The algorithm is first derived in the noise-free case and the theoretical result is given. Then the66

noisy case is considered and the associated closed-form estimator is presented. The proposed algorithm67
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is supported by a rigorous theoretical derivation which provides optimal parameters. Simulations68

results support the theoretical analysis and indicate the algorithm outperforms alternative methods.69

This paper is organized as follows: Section 2 introduces the background to the MDS algorithm70

and the associated ambiguity problem. The theoretical solution to the ambiguity problem is then71

presented in Section 3. Based on the theoretical analysis, Section 4 describes the impact of noise and72

introduces the proposed closed-form estimator for determining positions in noisy scenarios. Section 573

presents simulations to validate the proposed algorithm and finally Section 6 concludes the paper.74

2. Multidimensional Scaling Algorithm75

In this section, we briefly introduce the MDS algorithm and the ambiguity problem in an ideal
scenario. As stated previously the goal of MDS is to find a representation of the data that provides
a low dimensional map (usually 2 or 3 dimensions) of the relative positions of the nodes based on
their pairwise distances. If we consider the 2 dimensional case where there are n nodes with their true
coordinates denoted by S i = [xi, yi]

T where i = 1, . . . , n and n ≥ 3. Then in the noise-free case the
distance between nodes i and j where i, j = 1, . . . , n and i 6= j is given by di,j. If we assume in the ideal
scenario that the nodes are able to measure the true distances between each other so that the pairwise
distance between two nodes with coordinates S i and S j is given by

di,j = ‖S i − S j‖ =
√
(S i − S j)T(S i − S j),

and furthermore, the squared distance d2
i,j can be written as

d2
i,j = ST

i S i − 2ST
i S j + ST

j S j,

then we have the following symmetric Euclidean distance matrix:

D =


0 d2

1,2 d2
1,3 · · · d2

1,n
d2

2,1 0 d2
2,3 · · · d2

2,n
d2

3,1 d2
3,2 0 · · · d2

3,n
...

...
...

. . .
...

d2
n,1 d2

n,2 d2
n,3 · · · 0

 . (1)

If S = [S1, · · · ,Sn] is the collection of all of the node coordinates and ψ is the diagonal elements
of STS , i.e.

ψ = diag(STS) =
[
sT

1 s1, . . . , sT
n sn

]T
,

then we can rewrite D as
D = ψeT − 2STS + eψT , (2)

where e = [1, . . . , 1]T is the vector of ones of length n. Using the centering operation H = I− eeT/n
then we have

−1
2

HDH = UΛUT .

where UΛUT is the eigendecomposition of the symmetric matrix − 1
2 HDH. Then we can recover S

(up to a translation and orthogonal transformation) via the following formula

S∗ = Λ
1
2 UT , (3)

MDS is an efficient algorithm for resolving the relative positions of the nodes [32]. But as is76

apparent from the above analysis, in the absence of anchor nodes, MDS can only give relative positions77

of the nodes, which can include rotation and flip ambiguity. In other words, the result of MDS78
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maintains the relative inter-node distances, however, these calculated locations of the nodes may79

be flipped and/or rotated versions of the true positions of the nodes. Obviously when considering80

navigation of mobile nodes or formation control of the sensor network, incorrect positions of the nodes81

can lead to problems.82

2.1. The Ambiguity Problem83

To consider the ambiguity problem, we assume a set of n nodes in 2D Euclidean space. We fix84

a coordinate system which, without loss of generality, places the first node s1 at the origin: s1 =85

[0, 0]T . We recall that knowledge of the distances provides an ambiguity up to a universal Euclidean86

transformation of the nodes. This fixing of node 1 at the origin removes the shift from this Euclidean87

transformation. Accordingly, the solution of the MDS, S∗, is replaced by subtracting s∗1 from each88

column, so that, with some abuse of notation, s∗1 = [0, 0]T , and the other s∗j become s∗j − s∗1 . Once the89

shift is removed, the remaining ambiguity devolves to a rotation and a reflection (flip). We give the90

definitions of rotation and flip ambiguities as follows.91

Definition 1 (Rotation ambiguity). If there exists an angle θ 6= 2kπ, k ∈ Z such that92

S = M(θ)S∗, (4)

where M(θ) is rotation matrix with angle θ and defined by [38]

M(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (5)

then rotation ambiguity occurs.93

Definition 2 (Flip ambiguity). Flip ambiguity occurs if94

S = FS∗ with F =

[
−1 0
0 1

]
. (6)

Remark 1. The matrix F can be defined equivalently by F =

[
1 0
0 −1

]
. This definition can be obtained via95

simply rotating (6) by π. In the following analysis, we use the definition of F as in Definition 2.96

It can be seen that rotation ambiguity and flip ambiguity can occur simultaneously. If this is the
case then the true positions can be represented by

S = M(θ)FS∗. (7)

Examples of these two ambiguities are shown in Fig. 1.97

3. Resolving Rotation and Flip Ambiguities98

In this section, the rotation ambiguity is analyzed mathematically in the noise-free scenario and99

an analytical solution to the rotation and flip ambiguities presented.100

3.1. Analysis of Rotation Ambiguity101

Firstly, we assume that there exists only rotation ambiguity between S and S∗, no flip ambiguity.
This means that based on the coordination rotation principle [38], S∗ can be rotated to S using an
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Figure 1. Illustration of the positions of nodes calculated via MDS, where red circles are the desired
position (randomly generated) and black diamonds are the output of MDS. (a) rotation ambiguity only;
(b) rotation and flip ambiguities.

unknown angle θ via (4). Hence, the true (unknown) locations of the nodes [xi, yi]
T , for i = 1, . . . , n,

can be obtained by rotating [x∗i , y∗i ]
T by θ, i.e.

S = M(θ)S∗. (8)

Therefore, to obtain the true locations of the nodes we need to know θ. To achieve this we allow
the lead node to move, this movement can then be utilized to obtain information that can be used to
recover the locations of other nodes. Consider mobile nodes equipped with inertial navigation systems,
the lead node can move with known displacement and orientation; that is, we let the lead node move
to a known position, i.e. [∆x′1, ∆y′1]

T . Then the coordinates of all nodes after moving can be obtained as

S ′ = S + ∆S ′ (9)

(10)

where the i−th column of ∆S ′ is given by

∆S ′i =
{
[∆x′1, ∆y′1]

T i = 1

[0, 0]T i 6= 1
, (11)

Accordingly, after moving the distance between the ith and jth nodes is

d′i,j = ‖S ′i − S ′j‖,

where S ′i is the ith column of S ′. We can then update the distance matrix (2) with the entries d′ 2
i,j to

give

D′ = ψ′eT − 2S ′TS ′ + eψ′
T , (12)

where, by considering S1 = [0, 0]T and ∆S ′i = [0, 0]T for i = 2, . . . , n,

ψ′ = diag(S ′TS ′) = diag(STS) + diag(∆S ′T∆S ′) , ψ + ∆ψ′ (13)
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Substituting (9) and (13) into the distance matrix (12) we have

D′ = (ψ + ∆ψ′)eT − 2(S + ∆S ′)T(S + ∆S ′) + e(ψ + ∆ψ′)T

= (ψeT − 2STS + eψT) + (∆ψ′eT − 2∆S ′T∆S ′ + e∆ψ′
T
)− 2∆S ′TS − 2ST∆S ′

= D + ∆D′ − 2∆S ′TS − 2ST∆S ′,

giving

0 = D−D′ + ∆D′ − 2∆S ′TS − 2ST∆S ′, (14)

where 0 is a zero matrix with dimensions n× n. This equation describes the relationship between both102

the locations and the distance matrices pre and post the lead node moving; this information can be103

used to obtain the angle of rotation θ. If we break the analysis of (14) into three parts we have the104

following:105

1. Since only the lead node’s position is changed, then the term D−D′ in (14) becomes106

D−D′ =


0 d2

1,2 − d′ 2
1,2 · · · d2

1,n − d′ 2
1,n

d2
1,2 − d′ 2

1,2 0 · · · 0
...

...
. . .

...
d2

1,n − d′ 2
1,n 0 · · · 0

 . (15)

2. In (14), ∆D is the distance matrix between point ∆S1 and n− 1 origin points [0, 0]T , i.e.

∆D′ =


0 ∆x′1

2 + ∆y′1
2 · · · ∆x′1

2 + ∆y′1
2

∆x′1
2 + ∆y′1

2 0 · · · 0
...

...
. . .

...
∆x′1

2 + ∆y′1
2 0 · · · 0

 . (16)

3. For the term −2∆S ′TS − 2ST∆S ′ in (14), since ST∆S ′ can be calculated by

ST∆S ′ =


0 0
x2 y2

x3 y3
...

...
xn yn


[

∆x′1 0 0 · · · 0
∆y′1 0 0 · · · 0

]
=


0 0 · · · 0

x2∆x′1 + y2∆y′1 0 · · · 0
...

...
. . .

...
xn∆x′1 + yn∆y′1 0 . . . 0

 , (17)

therefore

−
(

2∆S ′TS + 2ST∆S ′
)
= −2

((
ST∆S ′

)T
+ ST∆S ′

)
. (18)

Inserting the rotation (8) into xi∆x′1 + yi∆y′1 in (17), for i = 2, . . . , n, we have

xi∆x′1 + yi∆y′1 = x∗i ∆x′1 cos(θ) + y∗i ∆x′1 sin(θ) + y∗i ∆y′1 cos(θ)− x∗i ∆y′1 sin(θ)

= (x∗i ∆x′1 + y∗i ∆y′1) cos(θ) + (y∗i ∆x′1 − x∗i ∆y′1) sin(θ). (19)

Using (19) allows us to express (18) in a way that is independent of [xi, yi]
T .107
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If we combine (15)–(19) then (14) becomes

D−D′ + ∆D′ − 2∆S ′TS − 2ST∆S ′ =


0 f2(θ) · · · fn(θ)

f2(θ) 0 · · · 0
...

...
. . .

...
fn(θ) 0 . . . 0

 = 0, (20)

where

fi(θ) = ai + bi cos(θ) + ci sin(θ), i = 2, . . . , n (21)

with coefficients

ai = d2
1,i − d′ 2

1,i + ∆x′1
2
+ ∆y′1

2 (22)

bi = −2(x∗i ∆x′1 + y∗i ∆y′1) (23)

ci = 2(x∗i ∆y′1 − y∗i ∆x′1) (24)

Equation (20) is equivalent to following system of equations:
a2 + b2 cos(θ) + c2 sin(θ) = 0

...
...

an + bn cos(θ) + cn sin(θ) = 0

, (25)

Finally, the solution to (25) is the angle to resolve the rotation ambiguity. Importantly, this solution
can be shown to be unique when n ≥ 3. If we consider the case of n = 3 then (25) can be expressed as

sin(θ) =
a3b2 − a2b3

b3c2 − b2c3
,W1

cos(θ) =
a2c3 − a3c2

b3c2 − b2c3
,W2

. (26)

Obviously, given W1 and W2, (26) has a unique solution to θ within [−π, π). Similarly, it is108

straightforward to show that, when n ≥ 3, (25) has a unique solution within [−π, π).109

3.2. Analysis of Rotation and Flip Ambiguities110

Having obtained a unique solution to the rotation angle when only rotation ambiguity is present,111

in this section, we present an analytical solution based on the analysis in Section 3.1 for when rotation112

and flip ambiguities occur simultaneously. The key idea behind this method is again to use the mobility113

of the lead node to acquire extra information in order to detect flip of the initial MDS localization114

result.115

Firstly, in order to be able to detect flip ambiguity, we assume that there exist three non-collinear
nodes. Next we note that the ith equation in (25), has the following solutions θi,1 and θi,2:

θi,1,2 = atan2
(

aibi ± |ci|
√

b2
i + c2

i − a2
i , aici ∓

bi
ci
|ci|
√

b2
i + c2

i − a2
i

)
, (27)
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(a) (b)

Figure 2. Illustration of angle θi,1 given in (28) using three nodes with true locations si and solved
ambiguous locations s∗i . (a) rotation ambiguity and θ2,1 = θ3,1; (b) flip ambiguity and θ2,1 6= θ3,1

where atan2(·, ·) ∈ [−π, π) is the 2-argument arctangent. Therefore, the solution to (27) which is
common to all values of i, ∀i = 2, . . . , n is the unique solution to (25). It can also be shown that
θi,1,2 ∈ [−π, π) given in (27) can be rewritten and rearranged into a concise form

θi,1 = g
(

atan2(y∗i , x∗i )− atan2(yi, xi)
)

(28)

θi,2 = g
(

θi,1 + 2Θi

)
(29)

where Θi = atan2 (yi, xi) + atan2
(
∆x′1, ∆y′1

)
− π

2 and the function g(t) = t− 2π
⌊

t
2π + 1

2

⌋
can wrap116

any arbitrary angle t in radians into range [−π, π). The full derivation of these equations is given in117

Appendix A.118

The angles θi,1 in (28) represent the angles between vectors
−−−→
S1S∗i and

−−−→
S1S i for i = 2, . . . , n,119

as shown in Fig. 2, and play an important role in the ability to detect flip ambiguity. As shown in120

the previous section, when there is only rotation ambiguity, because of the uniqueness of solution121

of (25), we have θi,1 = θj,1, ∀i, j = 2, . . . , n. Whereas, the angles θi,2 in (29) are the summation of θi,1122

and the angle induced by ∆x′1 and ∆x′2. Obviously, if there exist three non-collinear nodes, Θi 6= Θj,123

∀i, j = 2, . . . , n and i 6= j and therefore from (29) we have θi,2 6= θj,2, ∀i, j = 2, . . . , n. In contrast, it can124

be shown that flip ambiguity exists if and only if θi,1 6= θj,1, ∀i, j = 2, . . . , n and i 6= j. To illustrate why125

this is the case we give the counter example, assuming without loss of generality, that n = 3, θ2,1 = θ3,1126

and flip ambiguity exists. As shown in Fig. 2a, θ2,1 = θ3,1 implies that S∗i , i = 2, 3, can be rotated127

simultaneously to the true positions S i via either θ2,1 or θ3,1. Hence, this contradicts the assumption of128

the existence of flip ambiguity.129

Furthermore, extending to the case where n > 3, still assuming that θ2,1 = θ3,1 and flip ambiguity130

exists. We know that, for i = 2, 3, S∗i can be rotated simultaneously to the true positions S i via θ2,1 (or131

θ3,1). Since there exist three non-collinear nodes, then three nodes with correct positions are sufficient132

to guarantee the localization of the whole network [39]. In this case, s1, s2 and s3 can be found exactly133

from θ2,1 (or θ3,1). Therefore, S i, for i = 4, . . . , n, must be solvable via rotating S∗i by angle θ2,1 (or134

θ3,1) and, as a result, θi,1 = θ2,1 = θ3,1. This again contradicts the assumption of existence of flip135

ambiguity. On the other hand, if θi,1 6= θj,1, ∀i, j = 2, · · · , n and i 6= j, then it is obvious that there exists136

flip ambiguity since that s∗i cannot be rotated to S i simultaneously. As a conclusion, there exists flip137

ambiguity if and only if θi,1 6= θj,1, ∀i, j = 2, · · · , n and i 6= j.138
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In what follows we assume that there exist three non-collinear nodes and based on the above
analysis, we make the following conclusion:

∀i, j = 2, . . . , n and i 6= j

{
θi,1 = θj,1(equivalently θi,2 6= θj,2), If no flip ambiguity exists.

θi,1 6= θj,1(equivalently θi,2 = θj,2), If flip ambiguity exists.
(30)

Though we cannot use (28), (29) and (30) directly to determine the existence of flip as they contain139

unknown true positions, those results are crucial in deriving the estimator for locations in noisy140

scenario.141

In reality, the solution to (25) is computed using S∗, ∆S ′ and D′. We denote this unique solution
by θR

(
S∗, ∆S ′, D′

)
. The same notation θR(·, ·, ·) is used to denote a rotation angle calculated with

different variables, nonetheless whatever the variables used the method is the same as described above.
If we denote the positions calculated using the rotation angle θR

(
S∗, ∆S ′, D′

)
as S∗∗ we have the

following result

S∗∗ = M
(
θR(S∗, ∆S ′, D′)

)
S∗ =

[
x∗∗1 , x∗∗2 , · · · , x∗∗n
y∗∗1 , y∗∗2 , · · · , y∗∗n

]
. (31)

If the lead node then moves to a second position [∆x′′1 , ∆y′′1 ] giving a matrix formed by true
positions S ′′ = S + ∆S ′′, where

∆S ′′ =
[
∆S ′′1 , ∆S ′′2 , . . . , ∆S ′′n

]
=

[
∆x′′1 0 · · · 0
∆y′′1 0 · · · 0

]
. (32)

After obtaining a new distance matrix D′′ at position S ′′, we can solve θR(S∗∗, ∆S ′′, D′′). If
θR(S∗∗, ∆S ′′, D′′) = 0, then there is no flip ambiguity and the true positions are S = S∗∗; otherwise
we move to the process of resolving the flip ambiguity. For this, according to Definition 2, all values
in S∗ along the x−axis are required to be flipped to obtain FS∗. Then we only need to calculate the
rotation angle by using θR(FS∗, ∆S ′, D′). It should be noted that, since ∆S ′ and D′ are fixed, it is
unnecessary to take any new measurements and the true position S can be resolved by

S = M
(
θR(FS∗, ∆S ′, D′)

)
FS∗. (33)

4. Proposed Algorithm Robust to Ambiguity and Noise142

The analysis in the previous section assumes ideal measurements, however in practice, the
measurements are corrupted by noise which can have a significant impact on the localization
performance. If we consider the distances between two nodes, in the noise-free case the distance
between the ith and jth nodes is the same regardless of which node it is measured from, i.e. di,j = dj,i.
When noise is introduced this is no longer the case, if we denote the measured distances as d̄i,j and
d̄j,i, then d̄i,j 6= d̄j,i resulting in uncertainty in our estimates of the distances. In general, the measured
distance between the ith and jth nodes can be modeled by

d̄i,j = di,j + ωi,j, i, j = 1, . . . , n, i 6= j, (34)

where di,j is the true distance and ωi,j is the measurement noise.143

Accordingly, the noisy Euclidean distance matrix (EDM) can be written into144

D̄ =


0 d̄2

1,2 d̄2
1,3 · · · d̄2

1,n
d̄2

2,1 0 d̄2
2,3 · · · d̄2

2,n
d̄2

3,1 d̄2
3,2 0 · · · d̄2

3,n
...

...
...

. . .
...

d̄2
n,1 d̄2

n,2 d̄2
n,3 · · · 0

 . (35)
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As we know that di,j = dj,i when the noise is absent, therefore, in order to obtain a symmetric
EDM in noisy case, we can use

d̂i,j = d̂j,i = E(d̄i,j, d̄j,i) (36)

where E(d̄i,j, d̄j,i) is an estimator for the distance between i-th and j-th nodes using d̄i,j and d̄j,i. In145

practice, this estimator is designed by using the knowledge of noise distribution. For example, when146

the noise in d̄i,j and d̄j,i are assumed to comprise independent and identically distributed (i.i.d.) Normal147

distributions, then we have d̂i,j = d̂j,i =
1
2
(
d̄i,j + d̄j,i

)
[40]. Since the study of the estimator E(d̄i,j, d̄j,i)148

and estimation of the EDM is outside the scope of this article, we refer the interested reader to [40,41]149

for more information, including completing and estimating an EDM.150

Accordingly, the estimated symmetric EDM D̂ can be obtained using d̂i,j. Similarly, we can obtain151

D̂′ by using the new position of S ′ = S + ∆S ′ as described in (11).152

In (25), in the noise-free case, the solution is unique and easy to find. However, in the noisy
environment, the theoretical unique solution to (25) is not guaranteed. Therefore, a key issue in
estimating θ is to find a value which satisfies a certain objective, i.e.

θ̂R
(
S∗, ∆S ′, D′

)
= arg min

θ∈[−π,π)
Obj

(
θ; S∗, ∆S ′, D̂′

)
, (37)

where Obj
(
θ; S∗, ∆S ′, D′

)
is an objective function of θ given S∗, ∆S ′ and D̂′. In general, the least

square estimator provides a good choice of objective function as it is a well defined computationally
efficient estimator. The objective function based on the least square estimator is given by

Obj
(
θ; S∗, ∆S ′, D′

)
=

n

∑
i=1

(ai + bi cos(θ) + ci sin(θ))2 . (38)

Solutions to (38) can be obtained by taking the derivative of the objective function with respect to θ

and equating to zero, from this we obtain a quartic equation (see Appendix B for details) which has at
most 4 real roots giving the corresponding collection of angles as

θλ =
{

arcsin(λ1), g(π − arcsin(λ1)), . . . , arcsin(λm), g(π − arcsin(λm))
}
∈ [−π, π),

where λj ∈ [−1, 1], j = 1, . . . , m, and m is the number of solutions, such that 1 ≤ m ≤ 4. Then (38)
becomes

θ̂R

(
S∗, ∆S ′, D̂′

)
= arg min

θ∈θλ

Obj
(

θ; S∗, ∆S ′, D̂′
)

, (39)

and accordingly, by (31)
S∗∗ = M

(
θ̂R

(
S∗, ∆S ′, D̂′

))
S∗. (40)

In order to detect flip ambiguity, we can follow the same method as described in Section 3, i.e.
let the lead node move to another position [∆x′′1 , ∆y′′1 ]

T and solve θ̂R

(
S∗∗, ∆S ′′, D̂′′

)
via (39) using

the estimated distance matrix D̂′′ obtained at the new position S ′′ = S + ∆S ′′. However, becasue of
the presence of noise θ̂R

(
S∗∗, ∆S ′′, D̂′′

)
is not necessarily equal to 0 when there is no flip ambiguity.

To handle this, we need to create a detector for the flip. For this, we use a straightforward threshold
detector: no flip, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ ≤ |l|
flip, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ > |l|, (41)

The following proposition, the proof of which is given in Appendix C, allows us to efficiently find153

an optimal threshold in (41).154
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Proposition 1. Under the noise-free case, if there exists flip ambiguity, then

θR
(
S∗∗, ∆S ′′, D′′

)
= g

(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
, (42)

where g(t) = t− 2π
⌊

t
2π + 1

2

⌋
.155

From Prop. 1, under the noise-free case, we know the value of θR
(
S∗∗, ∆S ′′, D′′

)
when a flip

occurs, therefore, in the noisy case, the optimal threshold is

l =
1
2

g
(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
.

As a conclusion, the positions of nodes can estimated using the following formula:

Ŝ =

M
(

θ̂R

(
S∗, ∆S ′, D̂′

))
S∗, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ ≤ |l|
M
(

θ̂R

(
FS∗, ∆S ′, D̂′

))
FS∗, if

∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ > |l| (43)

The algorithm to estimate locations of nodes with noisy measurements is summarized in156

Algorithm 1.

Algorithm 1: Algorithm to estimate locations of mobile nodes.
Result: Estimated locations of nodes
Initialization;
begin /* First step */

Collect d̄i,j for i, j = 1, · · · , n and estimate D̂ via (36);
Calculate S∗ via MDS algorithm;

end
begin /* Second step */

Let node 1 move to position [∆x′1, ∆y′1]
T ;

Collect d′i,j for i, j = 1, . . . , n at the new position and estimate D̂′;

Calculate θ̂R

(
S∗, ∆S ′, D̂′

)
according to (39);

end
begin /* Third step */

Let node 1 move to position [∆x′′1 , ∆y′′1 ]
T ;

Collect d′′i,j for i, j = 1, . . . , n at the new position and estimate D̂′′;

Calculate θ̂R

(
S∗∗, ∆S ′′, D̂′′

)
according to (39) and (40) using variables S∗∗, ∆S ′′ and D̂′′;

Use (43) to estimate the locations, i.e. Ŝ ;
end

if
∣∣∣θ̂R

(
S∗∗, ∆S ′′, D′′

)∣∣∣ < |l| then
Determine locations of nodes via F and (22)–(24);

else
Determine locations of nodes via (31);

end

157

5. Simulations158

To test the performance of the proposed algorithm, networks with randomly generated nodes159

were used. In all of the following simulations the position of the first node is fixed to [0, 0] and the160

positions of the other nodes are uniformly generated within [−20, 20].161
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To validate the proposed approach can address the ambiguity problem we use the same noise-free162

scenarios as given in Fig. 1 the results of which are shown in Fig. 3. Unlike the results obtained from163

the MDS alone, shown in Fig. 1, when we compare the locations of the true and estimated nodes in164

Fig. 3, we can see that using the method presented in Section 3, the rotation and flip ambiguities are165

solved correctly and therefore the positions of the nodes are successfully recovered.166
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Figure 3. Estimation of the positions of nodes in noise-free scenarios. (a) Rotation only; (b) Rotation
and flip.

Next we consider the noisy scenario, as discussed in Section 4, in the noisy scenario the detection167

of whether flip has occurred is no longer straightforward and requires an appropriate choice of168

threshold. Firstly, to demonstrate the ability of the proposed algorithm to detect flip or no flip states169

we tested two different network configurations: one with the number of nodes n = 6 and the other170

with n = 10. The noise is assumed to be Gaussian distributed with mean 0 and standard deviation, σ,171

of 0.01. For each of the configurations, the outcomes of 50 simulations are shown in Fig. 4. The results172

show that the proposed algorithm can correctly detect flip ambiguity in the noisy scenario.173
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Figure 4. Illustration of the detection of flip/no flip states and the corresponding values of∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣. The left y-axes represent the values of
∣∣∣θ̂R

(
S∗∗, ∆S ′′, D̂′′

)∣∣∣ and the threshold
while the right y-axes show the true and detected states of flip/no flip with σ = 0.01. (a) The
number of nodes n = 6, [∆x′1, ∆y′1] = [1, 0] and [∆x′′1 , ∆y′′1 ] = [0, 1]; (b) The number of nodes n = 10,
[∆x′1, ∆y′1] = [1, 0.5] and [∆x′′1 , ∆y′′1 ] = [0, 1].

Having established that the proposed algorithm can successfully deal with the ambiguity problem
we now consider the performance of the algorithm in terms of the accuracy of the localization. For the
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sake of simplicity, we define the noise level, standard variance of the noise, as δ = −20 log10 σ with
δ chosen to range from 20 to 50 in steps of 5 and σ calculated accordingly. For each noise level the
Root-Mean-Square Error (RMSE) from 2000 simulations is used to evaluate the performance of the
localization. The RMSE is defined by

RMSE =
1
n

n

∑
i=1

√√√√ m

∑
j=1

(x̂i,j − xi,j)2 + (ŷi,j − yi,j)2

m
(44)

where (xi,j, yi,j) and (x̂i,j, ŷi,j) are the true and estimated location of i-th, i = 1, · · · , n, node in j-th, j =174

1, · · · , m, Monte Carlo simulation. It is assumed that (xi,j, yi,j) is generated within region [−100, 100]×175

[−100, 100] uniformly in each Monte Carlo simulation.176

To provide a comparison with the proposed algorithm we implemented the nonlinear least squares177

(NLS) estimator presented in [37], solving the NLS using an optimization method. Additionally, the178

proposed algorithm essentially takes advantage of the mobility of the node to create virtual anchors179

for localizing the unknown nodes. As a result, the alignment method of relative locations proposed180

in [42,43] can be potentially applied in this scenario. As a comparison, the performance of this181

conventional method are also given.
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Figure 5. The RMSE for the proposed algorithm, the NLS estimator [37], NLSE, and conventional
algorithm proposed in [42,43] for different numbers of nodes and different noise levels.

182

From the simulation results shown in Fig. 5, it can be seen that the proposed algorithm has183

better performance in terms of the RMSE for different noise levels and numbers of nodes than the184

NLS estimator with the conventional method. The localization error are arise from two effects:185

1. MDS localization error; 2. mis-alignment error, i.e. the error from inaccurately aligning the186

positions. Additionally, it should also be noted that the algorithm proposed in this paper can estimate187

the positions of all of the nodes simultaneously, which cannot be achieved using the algorithm188

presented in [37]. As an indication of the computational efficiency of the proposed algorithm, our189

simulations indicate a ratio of required CPU time of the proposed algorithm relative to NLSE is190

Proposed algorithm : NLSE = 1 : 8.83.191
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6. Conclusion192

In this paper, we have presented an efficient cooperative localization algorithm based on MDS.193

The algorithm provides a practical solution for anchorless localization of mobile nodes using noisy194

measurements. Unlike traditional MDS algorithms which suffer from an ambiguity problem, the195

algorithm presented here can solve the flip and rotation ambiguities and accurately estimate the196

positions of nodes in 2D space. Simulation results demonstrate the accuracy of the algorithm, showing197

that it outperforms alternative methods. At the same time the proposed algorithm provides greater198

efficiency than alternative solutions which operate in an iterative manner by providing a closed-form199

solution. We point out that the main limitations of this algorithm are twofold. Firstly, as mentioned200

above, this algorithm has been developed in a 2D scenario, which limits its application in more complex201

situations. Though one may follow a similar procedure to derive the corresponding algorithm for a202

more general case i.e. 3D space, this is non-trivial as the geometry of the network has more degrees of203

freedom in the 3D space. Secondly, and in similar vein to other algorithms, the algorithm proposed204

here requires inertial navigation to provide the displacement of the moving node. As a result, a205

deeper analysis of the error arising from the inertial navigation system should be taken into account in206

improving this algorithm. These issues will be addressed in future work.207
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Appendix A215

Proposition A1. Function g(t) = t− 2π
⌊

t
2π + 1

2

⌋
can wrap arbitrary angle t in radians into range [−π, π)216

and it satisfies following properties: P.1 g(t1 ± t2) = g(g(t1)± g(t2)); and P.2 g(−t) = −g(t).217

Lemma A1. Let g(t) = t− 2π
⌊

t
2π + 1

2

⌋
, then

atan2(β1α2 ± β2α1, α1α2 ∓ β1β2) = g (atan2(β1, α1)± atan2(β2, α2)) , (A1)

218

From (22)-(24)), we have

ai = d2
1,i − d′ 2

1,i + ∆x′1
2
+ ∆y′1

2

=
(

x2
i + y2

i

)
−
(
(xi − ∆x′1)

2 + (yi − ∆y′1)
2
)
+ ∆x′1

2
+ ∆y′1

2

= 2
(

xi∆x′1 + yi∆y′1
)

and

b2
i + c2

i − a2
i =4(x∗i ∆x′1 + y∗i ∆y′1)

2 + 4(y∗i ∆x′1 − x∗i ∆y′1)
2 − 4

(
xi∆x′1 + yi∆y′1

)2

=4
((

d2
1,i − d2

1,i + y2
i

)
∆x′1

2
+
(

d2
1,i − d2

1,i + x2
i

)
∆y′1

2 − 2xiyi∆x′1∆y′1
)

=4
(

xi∆y′1 − yi∆x′1
)2 . (A2)
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Then from Lemma A1 and (A2), we have

θi,1,2 = atan2
(
−aici ∓

bi
ci
|ci|
√

b2
i + c2

i − a2
i , −aibi ± |ci|

√
b2

i + c2
i − a2

i

)
= −g

(
atan2(bi, ci) + atan2

(
ai, ±

|ci|
ci

√
b2

i + c2
i − a2

i

))
(A3)

= −g
(

atan2(bi, ci) + atan2
(

ai, ±2 (xi∆y1 − yi∆x1)
))

. (A4)

From (A3) to (A4), the sign of ± |ci |
ci

√
4 (xi∆y1 − yi∆x1)

2 is interpreted by ±, which implies that the219

values of θi,1 and θi,2 may be simply exchanged.220

Furthermore,

atan2(bi, ci) = atan2
(
−
(
x∗i ∆x′1 + y∗i ∆y′1

)
, x∗i ∆y′1 − y∗i ∆x′1

)
= − atan2

(
x∗i ∆x′1 + y∗i ∆y′1, x∗i ∆y′1 − y∗i ∆x′1

)
= g

(
− atan2 (y∗i , x∗i )− atan2

(
∆x′1, ∆y′1

) )
(A5)

and

atan2
(
ai, ±2

(
xi∆y′1 − yi∆x′1

))
= g

(
atan2

(
2
(

xi∆x′1 + yi∆y′1
)

, ±2
(

xi∆y′1 − yi∆x′1
) ))

=

g
(

atan2(yi, xi) + atan2(∆x′1, ∆y′1)
)

g
(
− atan2(yi, xi)− atan2(∆x′1, ∆y′1)

) . (A6)

Substituting (A6) and (A5) into (A4) leads to

θi,1 = g
(

atan2(y∗i , x∗i )− atan2(yi, xi)
)

θi,2 = g
(

atan2(y∗i , x∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)

= g
(

θi,1 + 2Θi

)
where Θi = atan2(yi, xi) + atan2(∆x′1, ∆y′1)−

π
2 .221

Appendix B222

Taking the derivative of Obj
(
θ; S∗, ∆S ′, D′

)
with respect to θ, we have

∂

∂θ

n

∑
i=1

(ai + bi cos(θ) + ci sin(θ))2

=
n

∑
i=1

2 (ci cos(θ)− bi sin(θ)) (ai + bi cos(θ) + ci sin(θ))

=
n

∑
i=1

(
−aibi sin(θ) + aici cos(θ) + bici cos2(θ)− bici sin2(θ) + (c2

i − b2) sin(θ) cos(θ)
)

=2
(
−αn sin(θ) + βn cos(θ) + 2γn cos2(θ) + δn sin(θ) cos(θ)− γn

)
, (A7)
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where

αn =
n

∑
i=1

aibi, βn =
n

∑
i=1

aici,

γn =
n

∑
i=1

bici, δn =
n

∑
i=1

(c2
i − b2

i ).

If we let sin(θ) = λ ∈ [−1, 1] and cos(θ) = ±
√

1− λ2. Then setting (A7) to 0 leads to:

γn ± βn
√

1− λ2 − 2γnλ2 ± δnλ
√

1− λ2 − αnλ = 0. (A8)

Rearranging (A8) and squaring both sides, we have:(
±(βn + δnλ)

√
1− λ2

)2
=
(
−γn + 2γnλ2 + αnλ

)2

=⇒ Anλ4 + Bnλ3 + Cnλ2 + Dnλ + En = 0, (A9)

where

An = 4γ2
n + δ2

n, Bn = 2(2αnγn + βnδn), Cn = α2
n + β2

n − 4γ2
n − δ2

n,

Dn = 2(−αnγn − βnδn), En = −β2
n + γ2

n.

Equation (A9) is a quartic equation [44] and has at most 4 real roots. Suppose that we have
1 ≤ m ≤ 4 solution(s) from (A9) satisfying λj ∈ [−1, 1], j = 1, . . . , m, then the corresponding collection
of angles is

θλ =
{

arcsin(λ1), g(π − arcsin(λ1)), . . . , arcsin(λm), g(π − arcsin(λm))
}
∈ [−π, π).

Appendix C223

Proof of Proposition 1. If we recall from (30) that in the case of flip ambiguity we have

θR
(
S∗, ∆S ′, D′

)
= g

(
atan2(y∗i , x∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π

)
, (A10)

then we can rearrange to give

θR
(
S∗, ∆S ′, D′

)
=g
(

atan2(y∗i , x∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π

+ atan2(y∗∗i , x∗∗i )− atan2(y∗∗i , x∗∗i )
)

=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)

+ g
(
− atan2(y∗∗i , x∗∗i ) + atan2(y∗i , x∗i )

)
. (A11)

From the definition of S∗∗ in (31) it can be shown that

g
(
− atan2(y∗∗i , x∗∗i ) + atan2(y∗i , x∗i )

)
= θR

(
S∗, ∆S ′, D′

)
,
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giving

θR
(
S∗, ∆S ′, D′

)
=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)
+

θR
(
S∗, ∆S ′, D′

)
0 =g

(
atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π

)
. (A12)

Incorporating (A12) into the equation for θR
(
S∗∗, ∆S ′′, D′′

)
we have

θR
(
S∗∗, ∆S ′′, D′′

)
=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′′1 , ∆y′′1 )− π
)

=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′′1 , ∆y′′1 )− π

+ 2 atan2(∆x′1, ∆y′1)− 2 atan2(∆x′1, ∆y′1)
)

=g
(

atan2(y∗∗i , x∗∗i ) + atan2(yi, xi) + 2 atan2(∆x′1, ∆y′1)− π
)

+ g
(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
=g(0) + g

(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
=g
(
− 2 atan2(∆x′1, ∆y′1) + 2 atan2(∆x′′1 , ∆y′′1 )

)
. (A13)
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