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Abstract—Accurate statistical models of neural spike responses
can characterize the information carried by neural populations.
But the limited samples of spike counts during recording usually
result in model overfitting. Besides, current models assume spike
counts to be Poisson-distributed, which ignores the fact that many
neurons demonstrate over-dispersed spiking behaviour. Although
the Negative Binomial Generalized Linear Model (NB-GLM) pro-
vides a powerful tool for modeling over-dispersed spike counts,
the maximum likelihood-based standard NB-GLM leads to highly
variable and inaccurate parameter estimates. Thus, we propose a
hierarchical parametric empirical Bayes method to estimate the
neural spike responses among neuronal population. Our method
integrates both Generalized Linear Models (GLMs) and empir-
ical Bayes theory, which aims to (1) improve the accuracy and
reliability of parameter estimation, compared to the maximum
likelihood-based method for NB-GLM and Poisson-GLM; (2)
effectively capture the over-dispersion nature of spike counts
from both simulated data and experimental data; and (3) provide
insight into both neural interactions and spiking behaviours of
the neuronal populations. We apply our approach to study both
simulated data and experimental neural data. The estimation of
simulation data indicates that the new framework can accurately
predict mean spike counts simulated from different models and
recover the connectivity weights among neural populations. The
estimation based on retinal neurons demonstrate the proposed
method outperforms both NB-GLM and Poisson-GLM in terms
of the predictive log-likelihood of held-out data. Codes are
available in https://doi.org/10.5281/zenodo.4704423

I. INTRODUCTION

UNDERSTANDING the statistical dependencies between
neural time series (e.g., spike counts, membrane poten-

tial, local field potential, EEG and fMRI) is vital to deducing
how populations of neurons process information [1–4]. With
the recent increase in accessibility of datasets containing
spiking activities from large-scale neural populations, it is
now possible to test the effectiveness of different methods
for extracting functional dependencies at the neuronal level.
Here, we consider the problem of recovering the connectivity
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weights between neurons in a network by merely observing
their simultaneous spiking activity (e.g., spike counts).

Two of the most commonly used models for simultane-
ously recorded spiking activity are Generalized Linear Models
(GLMs) [5–9] and Latent Variable Models (LVMs) [10–
14]. In the supervised setting, GLMs have used stimuli and
spiking histories as covariates driving the spiking of a neural
population [15]. GLMs are also closely related to the well-
known Hawkes process model [16], which has been used
extensively for network inference [17–21]. GLMs essentially
introduce a nonlinearity to the Hawkes process that ensures
positive rates and allows for super- or sub-linear influences
between nodes. Spike counts can then be generated using
a count-valued distribution via selecting a certain bin size.
In the unsupervised setting, LVMs focus on extracting a
low-dimensional, smooth, and time-evolving latent structure
that can capture the variability of the recorded data, both
temporally and spatially. However, in both these settings,
the spike counts in each time bin are often assumed to be
conditionally Poisson, given the shared signal [22].

While the Poisson assumption gives algorithmic conve-
niences, it implies the conditional mean and variance of spike
counts are equal. This ignores the fact that in some cases
the variance of spike counts could be much larger than its
mean [23, 24], that is, the data is over-dispersed. Various
models have been proposed for representing the non-Poisson
spike counts [25, 26]. The Negative Binomial (NB) model
has been proposed as a solution to handling over-dispersed
spike counts [27–29]. Here we intend to extract functional
dependencies among neurons and give insights over neural
interactions. Thus, NB-GLM is a natural extension to achieve
this goal while simultaneously capturing the over-dispersion
of each neuron.

Despite the ease of implementation of maximum likelihood
estimation for the NB-GLM, when the recorded length of
spike-train data is short, and a large number of neurons
are recorded simultaneously, the accuracy of the estimated
coefficients using GLMs with NB responses is low [2, 3, 30].
Unfortunately, in typical experimental settings, we cannot
obtain long sequences of high-quality neural data due to (i) the
short lifetime of some neurons, (ii) the limited viable time of
recording materials and (iii) the micro-movement of recording
electrodes during the activity of the animal [31]. Hence,
dataset size is often small due to either the short experiment
length or the need for real-time inference [8, 32, 33]. In this
case, the maximum likelihood estimator of the parameters
in the NB distribution leads to a large mean square error
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(MSE) under a standard GLM. To alleviate this problem, one
can employ regularizing priors in the form of a hierarchical
model, as a trade-off between bias and variance. The key
challenges of hierarchical modeling are how to design flexible
prior structures and efficiently solve the non-trivial inference
problem, which are the main focuses of our work.

In this paper, we propose a hierarchical empirical Bayes
estimator for the probability parameters of NB-GLM, which
helps to model Short Over-Dispersed Spike-Trains (we call
“SODS”). Finally, it can capture accurate spiking behaviour
of neurons and meanwhile recover connectivity among neu-
rons under the GLM framework. Our hierarchical framework
places a prior distribution on the parameters of the NB
distribution, which can be estimated using empirical Bayes.
The hyperparameters of the prior distribution are estimated
using maximum marginal likelihood methods. The estimated
value can then be used to obtain the mean spike counts. In
summary, our main contributions are four-fold:

1) Provide a hierarchical extension of the NB-GLM for
modeling the statistical dependences among neural re-
sponses including a flexible link function;

2) Develop an efficient empirical Bayes method for infer-
ence of the hierarchical NB-GLM parameters;

3) Present more accurate prediction performance on retinal
ganglion cells compared with state-of-the-art methods;

4) Give insightful findings on both neural interactions and
spiking behaviours of real retina cells.

This paper is organized as follows. In Section II, we review
the properties of the Negative Binomial Distribution and the
differences between full and empirical Bayes approaches. In
Section III, we introduce the “SODS” and the roles of the
parameters. Section III-C discusses parameter estimations in
SODS, via numerical optimization of the maximum marginal
likelihood. Section IV introduced different data simulation
methods we used for estimators evaluation. Results for both
simulated and experimental data are presented in Section V.
Discussion of our contributions and findings are concluded in
Section VI.

II. REVIEW

A. Negative Binomial Distribution

The Negative Binomial distribution can be seen as an
extension of the Poisson distribution. The mean of Poisson
distribution λ represents the mean spike counts, which can be
heterogeneous within different time intervals. By assuming the
rate parameter λ is generated from the Gamma distribution,
we have:

Y | λ ∼ Poisson(λ), (1)

λ | r, θ ∼ Gamma

(
r,

θ

1− θ

)
. (2)

where r is the shape parameter and θ is the probability
parameter. Then the discrete random variable Y follows the
Negative Binomial distribution NB(r, θ),

P (Y = y | r, θ) =

(
r + y − 1

y

)
θr(1− θ)y. (3)

Fig. 1: (a) The relationship between variance and mean of
the Poisson and Negative Binomial distributions. Negative
Binomial shows super-Poisson variability (variance larger than
mean). (b) The probability mass function of NB distribution
with different parameters (θ = {0.1, 0.2}, r = {2, 3, 4}). Larger
r and smaller θ lead to a higher probability to generate large
count values.

Therefore, we can calculate E[Y ] = (1−θ)r
θ , and Var[Y ] =

(1−θ)r
θ2 , with Var[Y ] > E[Y ] since 0 < θ < 1.
Fig. 1a shows the relationship between variance and mean

of Negative Binomial and Poisson distributions. The vari-
ance of the NB distribution is larger than the mean, which
shows super-Poisson variability [24, 34]. Fig. 1b shows the
probability mass function of NB distribution with different
combinations of parameters r and θ.

B. Empirical Bayes Inference

Neuronal connectivity is modeled as an input-output sys-
tem, which links the Negative Binomial output and spiking
activities of input neurons via a hierarchical model. In the
hierarchical setting, we can use either fully Bayesian inference
or empirical Bayes to estimate the model parameters. Fully
Bayesian inference assumes a specific hyperprior over the
hyperparameters, which needs to be integrated out. As we
often cannot obtain the closed form of this marginalization,
fully Bayesian inference requires a sampling strategy to ap-
proximate this distribution. Correspondingly, this comes at
a high computational cost, especially for high-dimensional
data [35].

On the other hand, empirical Bayes inference sets the
parameters in the highest level of the hierarchical model with
their most likely value. Setting the hyperparameters by maxi-
mizing the marginal likelihood function incurs a much lower
computational cost. Hence, by combining empirical Bayes
with the Negative Binomial GLM we can produce an estimator
for the parameters of the Negative Binomial distribution which
should efficiently handle both over-dispersion and smaller
datasets. The key is to establish a network model in this
framework and still capture super-Poisson spiking behaviour.

III. PROPOSED METHOD FOR “SODS”
A. Hierarchical Negative Binomial Model

Fig. 2a illustrates an example of a simple network con-
sidered in this work. We represent functional dependencies
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Fig. 2: (a) A simple network model considered in our work,
with excitatory and inhibitory effects and which generates NB
spiking behaviour. (b) An illustration that neuron #4 and #5
have effects on #2 through a flexible link function and then
a NB distribution. The observed data are multiple spike-train
data recorded simultaneously, which are presented as x1:4(t)
and y(t). Each grey line in x and y signals indicates one spike
obtained.

in this graph with the connection strengths (weights) between
neurons. Note that we can use input neurons’ spiking activities
(e.g., neurons #1: x1(t), #2: x2(t), #3: x3(t), #4: x4(t)) as
regressors to predict an output neuron’s spike counts (e.g.,
neuron #5: y(t)). Fig. 2b presents how neurons #5 and #4 have
excitatory and inhibitory effects on neuron #2 via a flexible
link function and a NB distribution model, respectively. The
accurate modeling of both link functions and the NB model
can help to retrieve intrinsic coupling strengths effectively.

Let Yij be the spike counts recorded from the jth experi-
mental trial at time i. We assume that {Yi}Kj=1 is generated
from the Negative Binomial distribution (with shape parameter
r and probability parameter θi). Furthermore, {Yi}Kj=1 are
conditionally independent given the shared θi across different
trials:

Yij | r, θi ∼ NB(r, θi). (4)

We use the beta distribution, the conjugate prior of the
Negative Binomial distribution, as the prior for θi:

θi ∼ Beta(αi, βi), (5)

i.e.,

p(θi) =
(θi)

αi−1(1− θi)βi−1

B(αi, βi)
,

where αi, βi are the hyperparameters, and

B(αi, βi) =

∫ 1

0

xαi−1(1− x)βi−1dx =
Γ(αi)Γ(βi)

Γ(αi + βi)
, (6)

is the beta function, and Γ(t) is the Gamma function.
We introduce the hyperparameter σ ≡ αi+βi, which can be

interpreted as a precision parameter that reflects the degree of
prior belief in the GLM, and is fixed across different time bins.
The prior mean is µi ≡ E(θi|αi, βi) = αi

σ , and αi = σµi,
βi = σ(1 − µi). We can thus determine the beta distribution
by learning µi and σ. In particular, we learn µi by using a
GLM with the mean spike counts of the input neurons at the
previous time step (xi−1) (see the graphical model in Fig. 3).
A vector of functional weights, ω, capture the directed effects
of input neurons on the output neuron. µi is modeled as:

g(µi) = x>i−1ω. (7)

Here ω is the vector of coupling weights, which captures how
the input neurons affect the spiking behaviour of the output
neurons. Positive or negative weights represent the excitatory
or inhibitory effects on the output neurons. As biological
neural networks usually have sparse topology, most weights
are zero or closed to zero[36].

Usually, the link function g(·) is predefined using a specific
form such as log, logit, probit, identity, and log− log [37].
However, we do not want to constrain the link function to be
a fixed form. Hence, we propose a family of link functions
governed by a hyperparameter, γ, such that,

g (µi,γ) = log

(
(µi)

−γ − 1

γ

)
. (8)

We design this link family with three considerations: (1) it can
represent many widely used link functions. For instance, the
logit function when γ = 1, the complementary log− log link
function when γ ≈ 0; (2) It should constrain the prior mean,
modeled as the mean value of the probability parameter, to
µi > 0 and (3) it can be inverted to provide gradients for the
hyperparameters γ and ω (discussed in Section III-E) easily.
Note that the hyperparameter γ, is a flexible parameter which
determines the specific form of the link function, g(·), there-
fore ensuring the flexibility of the nonlinear transformation
from the regressors to the output. Denoting the inverse link
function by g−1

(
x>i−1ω,γ

)
, the prior mean becomes

µi = g−1
(
x>i−1ω,γ

)
=
(
γex

>
i−1ω + 1

)− 1
γ

. (9)

In the sequel, we let ζ ≡ {r,ω,σ,γ} denote the full set of
model parameters. Table I provides a complete summary of all
the variables used in the “SODS” estimator and Fig. 3a shows
the graphical model of the proposed hierarchical structure. The
observation data are Yi and xi−1; µi and θi are latent variables;
ζ ≡ {r,ω,σ,γ} are global parameters, which are consistent
across all time steps.

B. Empirical Bayes Estimator: SODS
First, we study the posterior distribution of θi. As the Beta

distribution is the conjugate prior of the Negative Binomial
likelihood function, the posterior distribution of θi given Yij =
yij follows the beta distribution [27]:

θi | yij ,xi−1 ∼ Beta
(
σµi + nir,σ (1− µi) + niyi

)
, (10)
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TABLE I: Summary of variable definitions.

Variable Definition
yij Spike counts of j-th trial at i-th time bin
xi−1 Vector of regressors at (i-1)-th time step
λi Mean of Poisson distribution (firing rate of neurons)
θi Probability parameter of Negative Binomial distribution
r # failures in Negative Binomial distribution

αi, βi Parameters of beta distribution
σ Precision of prior distribution (σ ≡ αi + βi)
ω Vector of weights
g(·) Family of link functions
γ Parameter determining specific form of link function
µi Mean of prior distribution
ni Number of trials at i-th time bin
ȳi Mean spike counts across all trials
πi Weight of the observation component in our estimator
K Data length (the total number of bins)

Ai, Bij , Cij Components of the gradients
p Element number of ω
N Total number of neurons
ζ (r,ω,σ,γ)
λe Constant that multiplies the elastic-net penalty terms
αe L1 ratio in elastic-net regularization

where ni is the number of trials in the ith time bin, and yi is
the mean count across all training trials at bin i. Substituting
(9) into (10), we get

θi | yij ,xi−1, ζ ∼ Beta
(
σg−1(x>i−1ω,γ) + nir,

σ
[
1− g−1(x>i−1ω,γ)

]
+ niyi

)
. (11)

We take the mean of this posterior distribution as the estimator
for θi, we call this estimator derived from our model as
“SODS” estimator, and denoted as θSODS:

θSODS
i = E(θi | yij , ζ) =

nir + σg−1(x>i−1ω,γ)

nir + niyi + σ
, (12)

which can be rewritten as

θSODS
i = πi

(
r

r + yi

)
+ (1− πi)g−1(x>i−1ω,γ), (13)

where πi = r+yi
r+yi+σ/ni

∈ (0, 1). Hence, θSODS
i is a convex

combination of the data-driven estimate of θi and the prior
mean of the GLM. We can consider πi as the parameter that
trades off between bias and variance. σ can be viewed as a
precision parameter. When σ → 0, thus πi → 1, it results
in θSODS

i only reflecting the observed data. When σ → ∞,
thus πi → 0, the estimator reduces to be standard Negative
Binomial GLM, which links the probability parameter with
the input regressors via a link function

E(θi | yij , ζ) = g−1(x>i−1ω,γ). (14)

With the estimator θSODS
i , the mean spike counts can then

be obtained from Eq. (3):

E[Yi|θSODS
i ] = r

( 1

θSODS
i

− 1
)

= r
niyi + σ − σg−1

(
x>i−1ω,γ

)
nir + σg−1

(
x>i−1ω,γ

) . (15)

(a)

(b)

Fig. 3: Graphical representation of the proposed model and the
NB-GLM model. (a) For the proposed model, the prior mean
µi is formed from the GLM of the input regressors xi−1, the
weight vector ω, and link function parameterized by γ. µi is
the mean of the beta prior of the NB probability parameter
θi. σ is the precision of the prior beta distribution. Finally, θi,
together with the shape parameter for the NB distribution r,
generate the observed spike counts Yij . (b) For the NB-GLM
model, θi is derived from the GLM of the input regressors
xi−1, the weight vector ω, and link function parameterized
by γ. Then θi, together with the shape parameter for the NB
distribution r, generate the observed spike counts Yij . Shaded
nodes xi−1 and Yij denote observed random variables; µi
(in the proposed model) and θi (in both models) are latent
random variables. r, ω, σ, and γ are hyperparameters for
the proposed model, while r, ω, and γ are hyperparameters
for the standard NB-GLM model. The bigger rectangular
box is “plate notation”, which denotes replication; the smaller
rectangular box is “inner plate”, which denotes the Yij from
different trials which share the same θi.

C. Maximum Marginal Likelihood

θSODS depends on ζ ≡ {r,ω,σ,γ}. To estimate ζ, we use
the empirical Bayes approach. We first derive the marginal
likelihood function, where the marginal distribution is the
spike counts conditioned only on the parameters. Then we
minimize the objective function, which combines the negative
marginal log-likelihood function and the elastic-net regular-
ization. Finally, we discuss how to use prior knowledge to set
the initial value for a more stable and accurate optimization
result.

Since using the maximum marginal likelihood approach
does not include any assumptions on the parameters, we have
the benefit of relatively low computational cost for estimating
high-dimensional parameters. To derive the marginal likeli-
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hood, we need to integrate out the probability parameter θi,
as p(yij) =

∫
p(θi)p(yij | θi)dθi. Reformulating the Negative

Binomial likelihood as

p(yij | θi) =
Γ(r + yij)

Γ(yij + 1)Γ(r)
θri (1− θi)yij

=
Γ(r + yij)

Γ(yij)Γ(r)

Γ(yij)

Γ(yij + 1)
θri (1− θi)yij

=
θri (1− θi)yij
B(r, yij)yij

, (16)

then, the marginal likelihood is

p(yij)=

∫ 1

0

p(θi)
θri (1− θi)yij
B(r, yij)yij

dθi

=
1

B(r, yij)B(αi, βi)yij

∫ 1

0

θr+αi−1
i (1−θi)yij+βi−1dθi

=
B(r + αi, yij + βi)

B(r, yij)B(αi, βi)yij
. (17)

Substituting αi and βi into Eq. (17) with αi =
σg−1(x>i−1ω,γ), βi = σ − σg−1(x>i−1ω,γ), the marginal
density of the spike counts conditioned on ζ is

pi(yij |ζ,xi)=
B
(
r+σg−1(x>i−1ω,γ), yij+σ−σg−1(x>i−1ω,γ)

)
B(r, yij)B

(
σg−1(x>i−1ω,γ),σ−σg−1(x>i−1ω,γ)

)
yij

and conditioning on yij , the log marginal likelihood `(ζ) =∑K
i=1

∑ni

j=1 log pi(yij) of the conditional posterior is

`(ζ) ∝
K∑
i=1

ni∑
j=1

[
log Γ

(
r + σg−1(x>i−1ω,γ)

)
+ log Γ(σ)

+ log Γ(r + yij)− log Γ(r + yij + σ)− log Γ(r)

+ log Γ
(
yij + σ − σg−1(x>i−1ω,γ)

)
− log Γ

(
σ − σg−1(x>i−1ω,γ)

)
− log Γ

(
σg−1(x>i−1ω,γ)

)]
. (18)

To obtain the objective function, we combine the elastic-net
regularization [38] with the negative log marginal likelihood
-`(ζ), as

H(ζ) = −`(ζ) + λe

(
αe‖ω‖1 +

1− αe
2
‖ω‖2

)
(19)

where αe and λe are parameters for the elastic-net regulariza-
tion. During optimization, we set αe = 0.5, and the optimal
λe ∈ [0.1, 1, 10] is chosen through 5-fold cross validation.

D. Prior Knowledge of the Parameters for Optimization

By minimizing the objective H(ζ) in Eq. (19), we obtain the
r,ω,σ and γ for the “SODS” estimator. These parameters
play different roles in explaining the neural spiking behaviour.
During the optimization with our simulation data, we ran-
domly select initial value of these parameters from different
distribution, as shown in Table II. But for optimization using
real neuronal recordings, tuning of the initial value should be
considered carefully to improve the estimation. In this section

we discuss each of them in turn, and present rules to tune the
initial values used in the optimization procedure.

• r is the Negative Binomial response’s shape parameter.
Physically, it contributes to the underlying firing rates
of neurons together with θ. As shown in Fig. 1b, larger
values of r give larger spike counts. In real situations,
the actual firing rates of the underlying neural population
may not be very high, e.g., in hippocampal areas. In such
cases, to get reasonable mean spike counts, we should
ensure that the initial value of r is small, as this helps
the spike count observations match the low firing rates.
Accordingly, if we believe a brain area has a high firing
rate, e.g., in motor cortex, we can initialize r to a higher
value. During optimization, r should be constraint as
positive value.

• ω is a vector of coupling weights, which help to capture
the directed effects of input neurons on the output neuron.
This is the core element to introduce connectivity into our
hierarchical model. This vector can also include other
factors such as the spiking history of the output neuron
or external stimuli e.g., if we have prior knowledge, for
instance the pixels of an image shown to excite the retinal
neurons. These weights can be positive or negative, which
can be explained as neurons having either an excitatory
or inhibitory effect on the output neuron. In section IV,
using simulated data, we test the ability of proposed
estimator to capture these excitatory and inhibitory effects
of neuronal connectivity. The initial values of elements
in ω are randomly chosen from the uniform distribution
on the interval (−1, 1) and ω is limited on the interval
(−1, 1) during optimization.

• σ is the precision of the beta distribution. It controls
the balance between our limited data sample and prior
knowledge. From Eq. (13), we can see that our proposed
estimator is the weighted combination of the observed
data θobsi = r

r+yi
and the standard GLM estimation

θGLM
i = g−1

(
x>i−1ω,γ

)
. The weights of each compo-

nent are πi = nir+niyi
nir+niyi+σ

and 1 − πi = σ
nir+niyi+σ

.
Thus, if σ is large, the proposed method is close to
the GLM of the prior mean; when it is small, the
estimator is approaching the observed data. The initial
value of σ should be determined by the number of trials
ni, such that, the more trials we have, the smaller σ
should be, which means we can have more confidence
in the observed data. During optimization, σ should be
constraint as positive value.

• γ conveys the nonlinear effects of input neurons on the
output neurons, which selects the best fit link function for
the dataset. Regularly, GLMs choose the link function
by specifying a parametric link. Our work, however, de-
termines the unknown parameter automatically. Learning
from the dataset itself allows our approach to select a
suitable link function automatically. The initial value of
γ is determined so as to result in relatively low firing
rate, which has empirically been shown to give good
performance for spike count prediction. As the inverse
link function Eq. (9) needs to map into the range [0,1], the
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γ should be kept positive during optimization. The initial
value of γ should not be too large, as the corresponding
inverse link function Eq. (9) would converge to 1 with
large γ value.

E. Optimization of Parameters

In hierarchical modeling, closed-form estimators are often
elusive. Thus, we use numerical optimization. Here, we apply
the Quasi-Newton method, Limited-memory BFGS [39, 40]
with global optimization method Basin-Hopping. We derive
the gradients w.r.t. r,ω,σ,γ as

∂H(ζ)

∂r
= −

K∑
i=1

ni∑
j=1

{Ψ
[
r + σg−1(x>i−1ω,γ)

]
+Ψ(r + yij)−Ψ(r + yij + σ)−Ψ(r)}

∂H(ζ)

∂ωp
= −σ

K∑
i=1

ni∑
j=1

∂g−1(x>i−1ω,γ)

∂ωp
(Ai −Bij)

+λe

[
(1− αe)ωp + αe sgn(ωp)

]
∂H(ζ)

∂σ
= −

K∑
i=1

ni∑
j=1

{
Aig

−1(x>i−1ω,γ)

+Bij

[
1− g−1(x>i−1ω,γ)

]
+ Cij

}
∂H(ζ)

∂γ
= −

K∑
i=1

ni∑
j=1

∂g−1(x>i−1ω,γ)

∂γ
(Ai −Bij) (20)

where

Ai = Ψ
(
r + σg−1(x>i−1ω,γ)

)
−Ψ

(
σg−1(x>i−1ω,γ)

)
Bij = Ψ

(
yij + σ − σg−1(x>i−1ω,γ)

)
− Ψ

(
σ − σg−1(x>i−1ω,γ)

)
Cij = Ψ(σ)−Ψ(r + yij + σ) (21)

Ψ(x) = ∂ log Γ(x)
∂x is the Digamma function, ωp is the individ-

ual element in the vector ω with p = (1, 2, . . . , N) and N
is the number of neurons. Moreover, in Eq. (20), the ease of
implementation of gradient calculations gives

∂g−1
(
x>i−1ω,γ

)
∂ωp

= −xpex
>
i−1ω

(
γex

>
i−1ω + 1

)− 1
γ−1

(22)

∂g−1
(
x>i−1ω,γ

)
∂γ

=
(
γex

>
i−1ω + 1

)− 1
γ

 log
(
γex

>
i−1ω + 1

)
γ2

− ex
>
i−1ω

γ(γex
>
i−1ω + 1)


(23)

We check the convexity of H(ζ) by simulation, and found
it did not satisfy the Jensen’s inequality [41]. It is difficult to
find the global minimum for a non-convex problem, especially
for multivariate models, as multiple distinct local minima
could exist. Basin hopping is a global optimization framework
designed for multivariable multimodal optimization problems
[42, 43]. During optimizations, we use Basin hopping with

TABLE II: The parameters of “SODS” estimator and the
probability density function used for parameters initialization.

Parameters Distribution
r Uniform(1 , 100 )
σ Uniform(1 , 100 )
γ Uniform(1 , 100 )
ω Uniform(−1 , 1 )

the local minimization optimizer, the Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno with Bound constraints (L-
BFGS-B), to find the global minimum of the objective function
H(ζ). During each iteration, the values in ζ are randomly
perturbed and used as the initial value for the L-BFGS-B
local optimizer. The new local minimum is accepted as a
global minimum if it is smaller than the old local minimum,
and the ζ will be updated with the new values. The iteration
of Basin-hopping will stop when the same H(ζ) is obtained
for consecutive 20 iterations. The maximum iteration for
Basin-hopping is 50. For L-BFGS-B, we only store the most
recent m=10 gradients for the approximation of the Hessian
matrix and the maximum iteration for the local minimizer is
5000. Iteration of L-BFGS-B will stop when the reduction
ratio of the objective value is less than ftol or when the
maximum component of the projected gradient is less than gtol
(ftol = 2.22e− 09, gtol = 1e− 05). We implement L-BFGS-
B and Basin-Hopping using the Scipy Optimization library
[44]. The steps for empirical Bayes inference for “SODS”
estimator are summarized in Algorithm 1.

IV. METHODS

A. Simulated Data from “SODS” models

The simulated data is generated via the process outlined
in Fig. 3a, and the general setup of simulations is listed in
Table III. To simulate a sparse neural network, we generate
the parameter ω as a sparse vector, which has a density of
0.2. The non-zero items in ω are generated from uniform
distribution on the interval (−1, 1). The nonzero values of
ω are randomly selected from the uniform distribution on the
interval (−1, 1). We simulate the spiking data with several
combinations of simulation trials Ns, data length per trial K,
and the global parameters of r,σ,γ,ω. For each parameters
set, we simulated ten pairs of training and testing data, which
shared the same simulation parameters, except for the weights
ω. Only training and testing data from the same pair had the
same weights. Different regressors x were assigned to the
training and testing data separately. The regressors x were
100-dimensional vector representing the activities from 100
independent input neurons. The value of each simulated input
neurons was generated from a standard normal distribution.

B. Simulated Data from NB-GLM and Poisson-like GLM

We also generate simulated data from NB-GLM and
Poisson-like GLMs. Similar to the “SODS” model, we
simulate spiking data with different data length, simulation
trials, and various combinations in the parameters. For NB-
GLM simulation, as outlined in Fig. 3b, we use the similar
flexible link function from the “SODS” model and estimate
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TABLE III: Sets of the parameters used for the “SODS” simulations.

Ns K ω r σ γ
(# of simulated trials) (data length) (weights) (shape parameter of NB) (precision) (link function)

10, 50, 100 100, 500, 1000, 2000 (-1,1) 3, 5, 7 50, 100, 1000, 1e9 5, 7, 9

Algorithm 1 The Hierarchical Parametric Empirical Bayes
Framework for Short Over-Dispersed Spike-Trains

Input: xi−1 = [xi−1,1, xi−1,2, . . . , xi−1,N ]> and yij
(i = 1, ...,K and j = 1, ..., Ns).

Output: r,ω,σ,γ.
1: Initialize r0,ω0,σ0,γ0 based on Section III-D
2: Based on Eq. (19) and L-BFGS-B, calculate the local

minimum Hmin and the corresponding r,ω,σ,γ,
3: for iter = 0; iter < 50; iter = iter + 1 do
4: Perturb the parameters r,ω,σ,γ,
5: Calculate new local minimum Hnew and the corre-

sponding {r,ω,σ,γ}new.
6: if Hnew < Hmin then
7: Hmin = Hnew; {r,ω,σ,γ} = {r,ω,σ,γ}new.
8: end if
9: if Hmin is the same for 20 iteration then

10: Break
11: end if
12: end for
13: return r,ω,σ,γ
14: Calculate the empirical Bayes estimation of probability

parameter E(θi | r,ω,σ,γ) from Eq. (12) as

θSODS
i = E(θi|r,ω,σ,γ) =

nir + σg−1 (xi−1>ω,γ)

nir + niyi + σ
.

15: Obtain the mean spike counts based on Eq. (3):

E[Yij |θi] = r

(
niyi + σ − σg−1 (xi−1>ω,γ)

nir + σg−1 (xi−1>ω,γ)

)
.

the probability parameter θ directly without the conjugate
prior. The inverse link function for NB-GLM is:

θi = g−1
(
x>i−1ω,γ

)
=
(
γex

>
i−1ω + 1

)− 1
γ

. (24)

where the γ is the flexible parameters for the link function,
the θi is the probability parameters of NB distribution at time i.
The NB-GLM spiking data is generated based on this inverse
link function Eq. (24) and Eq. (4).

For Poisson-like GLM, we utilize the smooth rectifier with
Poisson-GLM, as in [45]. Only ω is needed in the Poisson-like
GLM, the inverse link function is:

µi = log(1 + exi−1>ω). (25)

where µi is the rate parameter for output neuron at time i,
xi−1 are the mean spike counts for the regressor neurons at
time i− 1, the ω denotes the linear coefficients. The Poisson-
like GLM spiking data is generated based on this inverse link
function Eq (25).

Ten pairs of training and testing data are simulated for NB-
GLM and Poisson-like GLM separately. The parameters and

regressor x are also initiated in similar ways to those simulated
from “SODS” model.

C. Estimation from NB-GLM and Poisson-like GLM

We compared the performance of the “SODS” with the
NB-GLM and Poisson-like GLM estimators. The estimating
process from NB-GLM and Poisson-like GLM are similar
with “SODS”. We use the marginal log-likelihood approach
combined with the elastic-net regularization on weights. The
optimization procedures, the initial guess and bounds for
parameters are similar with those in the “SODS” estimator.

D. Simulated Data from Spiking Neural Network

In addition to simulation from GLMs, we also simulate data
from a simple spiking neural network (SNN) adapted from
[46]. The simple spiking neural network includes two layers
which have 100 neurons per layer. Spikes from neurons in the
first layer are generated from a Poisson process with the rate of
50Hz. The neurons in the second layer are built with the leaky
integrate-and-fire (LIF) model with exponential conductance
and a stochastic current. The following stochastic differential
equations describe the neuronal model:

dV

dt
=
[
ge + gi − (V − El)

]
/τm +

1

2
ξ(Vt − Vr)

√
1/τm

dge
dt

= −ge/τe
dgi
dt

= −gi/τi
ge ← ge + we, upon spike arriving at excitatory synapse

gi ← gi + wi, upon spike arriving at inhibitory synapse

where V is the membrane potential; Vt = −50mV is the
action potential threshold; El = −49mV is the leak potential
of the membrane; Vr = −60mV is the resting membrane
potential; ge, gi are the synaptic conductance for excitatory
and inhibitory synapse, both are initiated as 0mV; τm = 20ms
is the time constant for the membrane potential, τe = 5ms,
τi = 10ms are the time constants for the excitatory and
inhibitory synaptic conductance; we = 1.62mV, wi = −9mV
are the synaptic weight for excitatory and inhibitory synapse;
ξ denotes the stochastic current, which is a random variable
generated from standard normal distribution. The membrane
potentials of the target neurons are initiated randomly from
the uniform distribution on the interval (Vr, Vt).

There are 80 excitatory and 20 inhibitory neurons in the
first layer of SNN. Each target neuron in the second layer
receives excitatory and inhibitory inputs from neurons in the
first layer; the connection probability for all synapse is 0.2.
The simulation time lasted for 2500 seconds (biological time).
We set the bin size as 100ms based on the target neurons’
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Fig. 4: Spike count means and variances from simulated data
of different data length. The simulated spiking data from all
three GLMs have larger spike count variances than means. The
blue dashed line indicates the identity line, where the variance
equals to the mean. Simulated parameters used for “SODS”
simulation: r = 5, Ns = 50, σ = 50, γ = 7.

firing rates so that the mean spike counts would be within a
reasonable range. Data from neurons in the first layer is used
as regressors x, and those from the second layer are used as
targets y. The SNN simulation was implemented by the Brian2
Python Package [47].

E. Model Performance

We evaluate the “SODS” estimator on simulated data in
two aspects:
• Performance of the “SODS” estimator. In the simulation

process, we have the underlying ground truth regarding
the mean spike counts. We tested the performance of
the “SODS” estimator by calculating the Mean Squared
Error (MSE) and the R-squared value between the ground
truth and the estimated mean spike counts, based on
Eq. (3), E[Yi|θi] = r( 1

θi
− 1). We compare the MSE

and R-squared values of the “SODS” estimators with
those estimated by the NB-GLM and Poisson-like GLM
methods. A better estimator is the one that has lower
MSE and higher R-squared value.

• Interaction estimation. For the data simulated with
“SODS” model, we have the underlying ground truth
regarding the weights. The goodness-of-fit between the
true weights and the estimated weights is measured
to evaluate how accurately our model can recover the
weights of the interactions.

V. RESULTS

A. Estimation Results of Simulated Data from the “SODS”
model

As shown in Fig. 4, the simulated data from all three GLMs
had higher spike counts variance than spike counts mean.
Fig. 5 shows the performance of “SODS”, NB-GLM, and
Poisson-like GLM estimators in simulated data of different
simulation trials and data length. First, we evaluated the
estimation of the mean spike counts. As expected, increasing

(a)

(b)

Fig. 5: Box-plots of the R-squared and MSE values for
three GLM methods when estimating mean spike counts from
“SODS” simulated data of different trial numbers Ns (a) and
different data length K (b). Red:“SODS” estimator; Green:
NB-GLM; Blue: Poisson-like GLM. Other simulated param-
eters used for “SODS” simulation: r = 5,σ = 50,γ = 7.
K = 500 in (a), Ns = 50 in (b).

simulation trials and data length reduced the MSE and im-
proves R-squared values for all estimators. With flexible link
function and capturing the over-dispersed spiking behaviour,
the “SODS” and NB-GLM estimators showed better perfor-
mance than Poisson-like GLM. Moreover, “SODS” estimator
outperforms the other two models with higher R-squared value
and smaller MSE. Fig. 5 shows that with only 10 trials and 500
bins, “SODS” still performed well with small MSE and high
R-squared value. The scatter plots in Fig. 6 provide a clear
view of the comparison between ground truth and estimated
mean spike counts under different simulation trials and data
length.

Figures 8a and 8b show that “SODS” model consistently
outperformed the other two models with different values of r
and γ. The shape parameter r affects the expected mean spike
counts according to Eq. (3). “SODS” model better describes
the spiking behaviour regardless of the true value of r, which
makes it a better estimator for neurons with different range
of spike firing rate. Although the MSE increased with r, the
MSE increase in “SODS” was less than the other two models.

When the simulation used a smaller σ, all three estimators
gained smaller R-squared values and larger MSE regarding the
mean spike counts, as shown in Fig. 8(c). This is because σ
represents the precision of the NB distribution. And since σ in
“SODS” estimator was initiated within an interval of (1, 100),
NB-GLM outperformed “SODS” when the simulated data
was generated from σ far beyond that interval. However,
the R-squared value of “SODS” estimator was still higher
than 0.95, indicating the performance of “SODS” estimator
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Fig. 6: Comparison of the ground truth and estimated mean
spike counts from “SODS” estimation of data simulated from
“SODS” model. A larger number of simulation trials Ns
improves the estimation. Other simulated parameters used for
“SODS” simulation: r = 5,σ = 50,γ = 7.

Fig. 7: Comparison of the estimated weights from “SODS”
estimator and the ground truth weights. Different number of
trials Ns were used for simulation from “SODS” model.
Other simulated parameters used for “SODS” simulation:
r = 5,σ = 50,γ = 7,K = 500.

was not greatly affected by the initial guess of σ during
optimization.

Next, we evaluated the estimation of the weights ω from the
“SODS” simulated data. As we can see from Fig. 7: (1) the
“SODS” estimator performed better when more simulation
trials were used; (2) estimation variation was large when the
actual weights were close to 0; and (3) with as few as 50
simulation trials and 500 bins, the “SODS” estimator was
sufficient to provide accurate weight estimations (R-squared
value > 0.9).

(a)

(b)

(c)

Fig. 8: Box-plots of the R-squared and MSE value for three
GLM methods when estimating the mean spike counts from
“SODS” simulated data of different parameters r, σ, and
γ. Red:“SODS” estimator; Green: NB-GLM; Blue: Poisson-
like GLM. Other simulated parameters used for “SODS”
simulation: Ns = 50,K = 500.

B. Estimation Results of Simulated Data from Other GLM
Models

In addition to simulating data from “SODS” model, we
further evaluated the “SODS” estimator when the simulation
data were generated from NB-GLM and Poisson-like GLM.
As seen in Fig. 9 and Fig. 10, the R-squared values achieved
by the “SODS” estimator is higher than 0.95 for mean spike
counts estimation. This indicates the “SODS” estimator can
recover the true mean spike counts of the simulated data,
even when they are generated from NB-GLM and Poisson-like
GLM. As expected, the performance of “SODS” estimator
is not as good as those inferences using the matched model.
The reduction in performance of “SODS” estimator was
diminished when using more data for estimation.

C. Estimation with Missing Neurons

We cannot record spiking data from all neurons in the
brain. When only partial neurons are observed, a better spike
train model should flexibly capture the interaction between
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(a)

(b)

Fig. 9: Box-plots of the R-squared and MSE value for
“SODS” and NB-GLM estimator, when estimating the mean
spike counts from NB-GLM simulated data of different sim-
ulation trials (a) and different data length (b). Red:“SODS”
estimator; Green: NB-GLM. Other simulated parameters: r =
5,γ = 7. K = 500 in (a), Ns = 50 in (b).

(a)

(b)

Fig. 10: Box-plots of the R-squared and MSE value for
“SODS” estimator and Poisson-like GLM, when estimating
the mean spike counts from Poisson-like GLM simulated
data of different simulation trials Ns (a), and different data
length K (b). Red:“SODS” estimator; Blue: Poisson-like
GLM estimator. K = 500 in (a), Ns = 50 in (b).

the observed spiking neurons. Therefore, we evaluated the
performance of “SODS” estimation when using spiking data
from partial neurons. Similarly, ten pairs of training and testing
data were simulated from “SODS” model. The parameters
and regressor x were initiated in similar ways to those
simulated from “SODS” model. Then we randomly sampled
a portion of the simulated neurons from the training data for
estimation. The estimated parameters were used to predict the
mean spike counts of the test data. These sampling, estimation,
and prediction were repeated ten times for each pair of data.
We compared the estimated mean spike counts with the ground
truth of the test data. Results are shown in Fig. 11. As the
percentage of observed neurons decreased during estimation,
all estimators have decreased R-squared value and increased
MSE. When the observed neuron percentage reduced from
100% to 30%, the median R-squared values decreased from
above 0.9 to about 0.2. Although “SODS” model had slightly
higher median R-squared values and smaller median MSE
when partial neurons were used for estimation, the differences
among the three estimators were not significantly different.

The estimated weights ω were compared with the ground
truth in missing neuron condition. We separated the estimated
weights based on their corresponding ground truth values. For
non-zero weights in ω, all three models decreased in the R-
squared value when more neurons were missing. “SODS”
showed more reduction in the R-squared value than the other
two models(Fig. 12a). However, “SODS” can better estimate
when the ground truth weights equal to zero. As shown in
Fig. 12b, the estimated weights of “SODS” model were more
likely to be closed to zero than the other two models.

D. Estimation Results of Simulated Data from SNN Models

We calculated the fano factors for all target neurons from the
SNN model simulation. Results in Fig. 13 showed that 47%
of neurons have fano factor larger than 1, and 53% of them
have fano factor less than 1. We then compared the estimation
performance for “SODS”, NB-GLM and Poisson-like GLM
methods. The estimation was done for each target neuron in-
dependently. The regressors x are the mean spike counts from
the 100 neurons in the first layer of SNN. The target y is the
mean spike counts of the target neuron from the second layer
of SNN. The target y is one-bin later than the regressors x.
Firstly, we utilized 5-fold cross-validation to select the optimal
parameters for the elastic-net regularization. Then another 5-
fold cross-validation was used to estimate the predictive log-
likelihood of the held-out data given different models, and
MSE between the held-out data and the estimated mean spike
counts. A higher predictive log-likelihood and a smaller MSE
indicate the model better estimates the SNN data. We denote
`SODS, `NB, `Poisson as the predictive log-likelihoods of each
model; and MSESODS, MSENB, MSEPoisson as the predic-
tive MSE. The percentage log-likelihood increase is calculated
by `SODS−`NB

|`NB| ×100% and `SODS−`Poisson

|`Poisson| ×100%. The percent-
age MSE increase is calculated by MSESODS−MSENB

MSENB
×100%

and MSESODS−MSEPoisson

MSEPoisson
× 100%.

Fig. 14a revealed that the log-likelihood and the MSE value
of the held-out test data were similar between Poisson-like
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Fig. 11: Performance of estimators when only partial neurons
were observed during training. The R-squared value (a) and
MSE (b) were measured between the estimated and the true
mean spike counts for testing data. The performance decreased
as more neurons were missing during training. Simulation
Parameters: r = 5,σ = 50,γ = 7, Ns = 50,K = 1000. No
random sampling was done for the training data with 100%
observable neurons.

GLM and “SODS”estimator, as most of the differences were
closed to zero. But around 70% of neurons showed higher
log-likelihood and smaller MSE value in “SODS” estimator
when compared to NB-GLM, as seen in Fig. 14b.

Similar estimation performance between Poisson-GLM and
“SODS” estimators may be because the SNN spiking data
distribution is very likely to be a Poisson distribution. Some
neurons have fano factors very closed to 1. Our “SODS”
estimator can achieve similar performance as Poisson-like
GLM and outperform NB-GLM when the spiking data is not
over-dispersed.

E. Comparison between Empirical Bayes and fully Bayes
The advantage of empirical Bayes inferences is its lower

computational cost than fully Bayes approach. We use Basin-
Hopping and L-BFGS-B in our empirical Bayes inferences.
The computational complexity for L-BFGS-B is O(mn). Here
m = 10 indicates m recent gradients are used by L-BFGS-B
for Hessian approximation[48]. For fully Bayes, the process
is based on the MCMC algorithm with Not U-Turn Sam-
pler(NUTS), which has computational complexity as O(n

5
4 ),

according to [49].
We evaluated the estimated mean spike counts and weights

from the fully Bayes and the “SODS” model. We first set the

(a)

(b)

Fig. 12: Weights estimation when only partial neurons were
observed during training. The non-zero and zero weights were
evaluated separately. (a) R-squared value between non-zero
weights and the corresponding estimated weights. (b) The
density of estimated weights when the true weights were zero.
Simulation from “SODS” with parameters: r = 5,σ =
50,γ = 7, Ns = 50,K = 1000.

Fig. 13: The fano factor histogram of the 100 SNN-simulated
target neurons. The fano factors varied from 0.29 to 1.07 in
the target neurons.
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(a)

(b)

Fig. 14: Comparisons of “SODS” and other GLM models
in SNN data estimation. Both the predictive log-likelihood
and MSE were averaged across each fold of the 5-fold cross-
validation. The positive value for the increased log-likelihood
percentage indicates higher held-out data log-likelihood from
“SODS” estimator; while negative value for the increased
MSE percentage indicates lower held-out data MSE from
“SODS” estimator. (a) The histogram of the increased log-
likelihood percentage (left) and the increased MSE percentage
(right) between “SODS” and Poisson models. (b)The his-
togram of the increased log-likelihood percentage (left) and
the increased MSE percentage (right) between “SODS” and
NB-GLM models.

informative hyperprior distribution for the parameters based
on the simulation setting:

r ∈ Normal(µ = 5, σ = 1), lb = 0

σ ∈ Normal(µ = 50, σ = 1), lb = 1

γ ∈ Normal(µ = 7, σ = 1), lb = 0

ω ∈ Normal(µ = 0, σ = 1), lb = −1, ub = 1

(26)

The normal distribution here is truncated normal distribution
with bounds. lb denotes the lower bound, and ub denotes
the upper bound. We evaluated the estimation for one pair
of training and testing data. Results are shown in Fig. 15.
“SODS” estimation have better performance than MCMC
inference, in both mean spike counts (Fig. 15a) and weights
estimation (Fig. 15b), even when the parameter hyperpriors
were chosen arbitrarily to match the simulation setting during
MCMC inference.

The posterior predictive of the parameters r,σ,γ showed
convergence across 4 chains, but the estimated values were
very much different from the true value (Fig. 16a). When we
used a less informative hyperprior by increasing the sigma

(a)

(b)

Fig. 15: Comparison of the MCMC inference and “SODS”
estimation. (a) Comparison between the ground truth mean
spike counts and the estimated mean spike counts from the
MCMC inference (blue) and “SODS” estimation (red). R-
squared value is higher in SODS (R2

SODS = 0.96) than in the
MCMC inference (R2

MCMC = 0.83). (b) Comparison between
the ground truth weights and the estimated weights from the
MCMC inference (blue) and “SODS” estimation (red). R-
squared value for weight estimation is higher in “SODS”
(R2

SODS = 0.47) than in the MCMC (R2
MCMC = 0.13).

Spiking data were generated by “SODS” simulation with
parameters used for : r = 5, s = 50,γ = 7, Ns = 50,K =
500. We only used one set of training and test data for this
comparison.

value from 1 to 10 in the hyperprior distribution of the param-
eters r,σ,γ, the posterior predictive of σ shifts greatly to zero
(Fig. 16b). Moreover, the convergence of the MCMC method
become much worse when the hyperprior is less informative.
It is challenging to use MCMC inference in our hierarchical
model, as we can not design the hyperprior distribution for real
experimental data. In contrast, we can achieve convergence
with empirical Bayes inference. The typical iteration number
for L-BFGS-B is less than 20 (when estimating the “SODS”
simulation data with simulation trials Ns = 50, data length
K = 500 or K = 1000, Neurons number N = 100), which
is much less than the maximum 5000 iteration we set for
L-BFGS-B. Results in Fig.7 show that when using enough
simulation trials and data length, we can achieve R-squared
value higher than 0.95 for weights estimate. The good fit of
estimated and true weights indicates the convergence of the
optimization in empirical Bayes inference.

F. Estimation Results of Experimental Data

The experimental data used here is taken from multi-
unit recordings of retinal ganglion cells from the ret-1
database [50, 51], curated at CRCNS.org. This database has
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(a)

(b)

Fig. 16: The trace plot of MCMC inference with informative
prior (a), and less informative prior (b). For informative prior,
The sigma of each normal distribution in Eq (26) equals
to 1. For less informative prior, the sigma of each normal
distribution equals to 10. The left column is the smoothed
histogram (using kernel density estimation) of the marginal
posteriors of three parameters r,γ,σ. The dashed lines are the
true values for the simulation parameters. The right column is
the samples of the Markov chain plotted in sequential order.

single-unit neural responses recorded using a 61-electrode
array from isolated retina of mice. The recordings were taken
in response to various visual stimuli with the aim of aiding
understanding of how different visual stimuli influence the
spiking activity of retina cells. For population activity, network
models using the GLM framework are quite popular [2, 4, 5].
Therefore, we test our framework with state-of-the-art methods
on 2 datasets containing 15 and 14 neurons, respectively.
The experimental data (spike counts) were binned into 16 ms
bins. This bin size is a trade-off between how finely time is
discretized and the computational costs. Fig. 17 shows the
experimental neurons’ fano factors, which are varied from 0.45
to 2.68.

The estimation using experimental data is similar to the one
in SNN data. The mean spike counts of an individual neuron

Fig. 17: The fano factor histogram of the experimental dataset
neurons. Neurons with fano factor >1 or fano factor <1 were
found in both datasets.

Fig. 18: The box-plots of the percentage increase in held-
out test data log-likelihood (sorted by median value). The
log-likelihood is calculated by 5-fold cross-validation, using
spiking data in dataset #62814 (15 neurons) and #62871 (14
neurons). Left column: “SODS” compared with Poisson-like
GLM; Right column:“SODS” compared with NB-GLM

are estimated from other neurons within the same dataset. 5-
fold cross-validation was used to find the optimal parameters
for elastic-net regularization. Another 5-fold cross-validation
was used to estimate the predictive log-likelihoods and MSE.

“SODS” estimator outperforms Poisson-like GLM and
NB-GLM in the predictive log-likelihood comparisons. Fig. 18
shows 66.67% of neurons in #62814 and 92.86% of neurons in
#62871 present higher predictive log-likelihoods in “SODS”
estimator compared to Poisson-like GLM. 93.33% of neurons
in #62814 and 85.71% of neurons in #62871 have higher
averaged predictive log-likelihoods when using the “SODS”
model versus using NB-GLM. The comparison of MSE values
for three estimators shows that 53.33% of neurons in #62814
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Fig. 19: The box-plots of the percentage increase in held-out
test data MSE (sorted by median value). The MSE is calculated
between the estimated and actual mean spike counts, via 5-
fold cross-validation, using spiking data in dataset #62814 (15
neurons) and #62871 (14 neurons). Left column: “SODS”
compared with Poisson-like GLM; Right column: “SODS”
compared with NB-GLM

Fig. 20: Estimated network weights of two experimental
datasets #62814(a) and #62871 (b) using “SODS” model.
The neural interactions recovered from two dataset showed
sparsity. Left: histogram of the estimated weights; right:
the network visualization of the estimated weights. Each
number indicating one neuron. Red/blue lines highlight the
positive/negative weights, and the color intensity indicates the
weight strength. The edges with weights lower than 0.05 were
not presented.

and 78.57% of neurons in #62871 have lower MSE when using
“SODS” model versus using the Poisson-like GLM (Fig. 19).
But only 40.00% of neurons in #62814 and 78.57% of neurons
in #62871 showed lower MSE with the “SODS” estimator
than with NB-GLM estimator.

We estimated the network weights for two experimental
datasets with “SODS”. Fig. 20 shows the network weights
estimated using “SODS” for two experimental datasets.
Around 87.63% of total weights strength in #62814 dataset
and 79.56% in #62871 dataset is positive

(
|ω+|

|ω+|+|ω−|

)
. The

weights histogram in Fig. 20 showed most of the weights
were closed to zeros, which indicating that it may be a sparse
network. More accurate inference in the coupling weights
under neural circuits provides more insights about how the
neuronal population process the information, as the neural
circuits utilize the balanced or imbalanced excitation and
inhibition to facilitate the information processing [52, 53].

VI. DISCUSSION AND CONCLUSION

The bio-signal processing community has shown great
interest in multivariate regression methods [54–58]. These
methods can provide a clear view of the nature of neuronal
interactions. Linderman et al. [59] developed a fully Bayesian
inference method for Negative Binomial responses that yields
regularized estimations for all of the hyperparameters. Al-
though it can have uncertainties (probability distributions)
on all the parameters, applying fully Bayesian approaches
to hierarchical models is computationally intensive. As an
alternative, empirical Bayes can provide a bias-variance trade-
off which can achieve a small mean square error at a lower
computational cost. To estimate the unknown parameters of
the model, Paninski et al. [60] used maximum likelihood
estimation, but when the dataset is small, the estimation
becomes biased. The “SODS” estimator developed here, to
model over-dispersed spiking behaviour and extract latent
interactions among neural populations, combines both of the
above methods. It has the benefit of providing a bias-variance
trade-off estimator for Negative Binomial responses, while not
needing the intensive computation of fully Bayesian inference.

We took advantage of the beneficial properties of both
GLMs and empirical Bayes inference to propose the “SODS”
estimator. We used the Negative Binomial distribution to
model the spike counts of each neuron. The Negative Bino-
mial distribution was selected as it allows for over-dispersed
spike counts using a dispersion parameter superior to the
standard Poisson model. The beta distribution is employed
as the prior information for the probability parameter in the
Negative Binomial distribution, which allows for a closed-
form posterior distribution. We propose a flexible link function
family in order to model the prior mean using regressors. By
using the recorded data from other neurons as the covariates,
we can then infer the functional weights among the neural
population. Unlike fully Bayesian inference, which utilizes
informative hyperpriors in our cases, we instead estimate the
hyperparameters by maximizing the marginal likelihood. The
proposed “SODS” estimator is a shrinkage estimator and the
weights we estimate can be viewed as the hidden functional
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dependences. By taking the neurons as nodes in our functional
neural network, and their spike-train data as the observations,
our empirical Bayes inference method can be used to identify
the neural interactions, including excitatory and inhibitory
behaviours.

We have validated our method using both simulated data and
experimental retinal neuron data. Compared with two of the
most widely used regression methods: Poisson and Negative
Binomial regressions, “SODS” outperforms by accurately
estimating simulated spiking data from different simulation
systems. The performance of “SODS” remains excellent
when handling spiking data simulated from NB-GLM and
Poisson-GLM system. The performance of “SODS” is no
less than Poisson-GLM and much better than NB-GLM in
estimating spiking data simulated from SNN model. Moreover,
we found that “SODS” can accurately recover the neuronal
dependency by estimating the weights parameter from the
simulation data. With elastic-net regularization, “SODS” can
estimate the sparse properties of neural network. Although
performance decreased when partial neurons were missing
during estimation, “SODS” model is still good at identifying
the zeros weights in the connectivity. For the experimental
neurons, there was a substantial improvement in the predictive
log-likelihood of the held-out data when compared with NB-
GLM and Poisson-GLM methods.

While the results presented here are promising, going for-
ward, we are interested in extending our model. For instance,
the incorporation of Hebbian learning rules could account
for time-varying weights. Applying prior knowledge regarding
network structure, such as random, small world or scale-
free networks, could also be a promising avenue for future
research. External covariates can also be incorporated into
the model to capture neural patterns of stimulus dependence.
Finally, the ability of our model to operate in data-limited
cases would open possibilities for future applications to real-
time settings, such as for closed-loop experiments or improved
brain-machine interface (BMI) devices.
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