Landmark Management in the Application of Radar SLAM

Shuai Sun¹, **Beth Jelfs**², Kamran Ghorbani³, Glenn Matthews³ and Christopher Gilliam²

Navigation College, Dalian Maritime University, China
Dept. Electronic, Electrical and Systems Engineering, University of Birmingham, UK
School of Engineering, RMIT University, Australia

9th November 2022

Introduction	Methods	Simulation Results
Outline		

- Motivation → Radar SLAM, Landmark management
- Advantage \rightarrow High accuracy, Low cost, Small size, Robustness in harsh weather

2 Methods

- Framework → EKF SLAM (state augmentation)
- Landmark management → Rule based (M/N logic)

3 Simulation Results

4 Conclusions

Methods

Simulation Results

SLAM Using An FMCW Radar

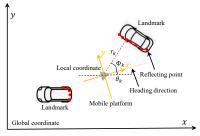


Illustration of a typical considered SLAM scene

- FMCW = frequency-modulated continuous-wave radar
- $\theta_k = \text{Orientation of the mobile platform}$
- r_k = Range of a particular detection point from the platform
- ϕ_k = Azimuth angle of a particular detection point

- Low cost
- High accuracy
- Better suited to extreme weather conditions, such as rain, fog, smoke

Methods

Simulation Results

SLAM Using An FMCW Radar

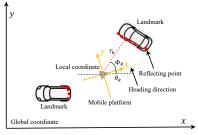


Illustration of a typical considered SLAM scene

- FMCW = frequency-modulated continuous-wave radar
- $\theta_k = \text{Orientation of the mobile platform}$
- r_k = Range of a particular detection point from the platform
- ϕ_k = Azimuth angle of a particular detection point

State of the art approaches:

- EKF SLAM, Fast SLAM etc.
- Assume each landmark can return at most one detection
- Assume landmarks remain static

Methods

Simulation Results

SLAM Using An FMCW Radar

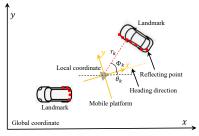


Illustration of a typical considered SLAM scene

- FMCW = frequency-modulated continuous-wave radar
- θ_k = Orientation of the mobile platform
- r_k = Range of a particular detection point from the platform
- ϕ_k = Azimuth angle of a particular detection point

What we need:

- Varying number of radar detections for each landmark
- Vehicles may arrive or leave the scene (slow dynamic)

EKF SLAM: Problem Formulation

$$\mathbf{x}_{k}^{a} = \left[\underbrace{x_{k}, y_{k}, \theta_{k}}_{\mathbf{x}_{k}^{m}}, \underbrace{\mathbf{p}_{k}^{1}, \dots, \mathbf{p}_{k}^{N_{k}}}_{\mathbf{x}_{k}^{\ell}}\right]^{T}$$

• $\mathbf{x}_k^m = [x_k, y_k, \theta_k]^T$: the pose of the mobile platform, namely the 2D location and heading of the mobile platform

• $\mathbf{x}_{k}^{\ell} = \left[\mathbf{p}_{k}^{1}, \dots, \mathbf{p}_{k}^{N_{k}}\right]^{T}$: vector of landmarks registered in the system, each $\mathbf{p}_{k}^{n} = \left[p_{k}^{n}(x), \ p_{k}^{n}(y)\right]$.

• the total number of landmarks ${\cal N}_k$ will vary with time as landmarks are added and removed

Introduction

H. Lee, J. Chun, and K. Jeon, 'Experimental results and posterior cramér-rao bound analysis of EKF-based radar SLAM with odometer bias compensation', IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 310–324, 2020.

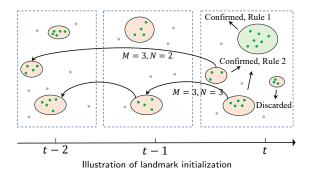
EKF SLAM: Problem Formulation

$$\mathbf{x}_{k}^{a} = \left[\underbrace{x_{k}, y_{k}, \theta_{k}}_{\mathbf{x}_{k}^{m}}, \underbrace{\mathbf{p}_{k}^{1}, \dots, \mathbf{p}_{k}^{N_{k}}}_{\mathbf{x}_{k}^{\ell}}\right]^{T}$$

Our Approach:

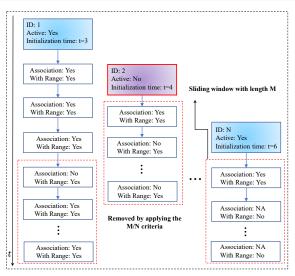
Introduction

 \hookrightarrow Consider each landmark can return multiple radar detections (the number is unknown and varies with time)


 $\, \, \hookrightarrow \,$ Handle the tedious landmark management problem: initialization, association, removal and merge

 $\, \hookrightarrow \,$ Able to deal with slow dynamics: landmarks leave or enter the scene

 H. Lee, J. Chun, and K. Jeon, 'Experimental results and posterior cramér-rao bound analysis of EKF-based radar SLAM with odometer bias compensation', IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 310–324, 2020.


Introduction Methods Simulation Results

Landmark Management \rightarrow Landmark Initialization

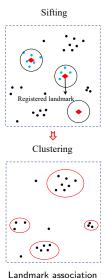
- Rule 1 (maximum point criteria), the number of radar detections in a cluster exceeds threshold N_{c_1}
- Rule 2 (multi-frame criteria, if Rule 1 is not satisfied), during M consecutive time steps, if there are at least N times that this cluster is detected/observed

Landmark Management \rightarrow Landmark Removal

Illustration of landmark removal

EKF-SLAM Algorithm

- **EKF Prediction:** $(x^a_{k|k-1}, P^a_{k|k-1})$
 - Predict mobile platform state based on odometry


Methods

Predict landmark state

$$\mathbf{x}_{k|k-1}^{a} = \begin{bmatrix} f_m \left(\mathbf{x}_{k-1|k-1}^{m}, \ \bar{\mathbf{u}}_k \right) \\ \mathbf{x}_{k-1|k-1}^{\ell} \end{bmatrix}$$

- **EKF Update:** $(x_{k|k}^u, P_{k|k}^u)$
 - Associate radar detections to registered landmarks
 - 2 State update for each landmark
 - 3 Remove spurious landmarks (M/N association logic)
 - 4 Cluster the remaining radar detections
 - 5 New landmark initialization
 - 6 Landmark merge

$$\mathbf{x}_{k|k}^{a,u} = \mathbf{x}_{k|k-1}^{a} + W_k \left(\mathbf{z}_k - h_n \left(\mathbf{x}_{k|k-1}^{a} \right) \right)$$
$$P_{k|k}^{a,u} = P_{k|k-1}^{a} - W_k S_k W_k^T.$$

and initialization

ction

Example Landmark Initialization

$\hookrightarrow~$ A false landmark is intialized and later removed from the system by using a M/N removal logic.

aduction Methods Simulation Results

Landmark Management In Low Dynamics

(a) A previously registered landmark vehicle leaves the scene

(b) The non-existing landmark is identified and removed

 \hookrightarrow The proposed M/N logic based landmark management can maintain the landmarks in a consistent manner.

ntroduction 🎞			Metho TTT	Simulation Results
÷ .	1.01	1.1.1.1.1.1.1	1. A.	

Typical Simulation Results

Example of the whole SLAM process simulated in a car park scene:

 $\, \hookrightarrow \,$ Landmarks are managed in a consistent manner.

Monte Carlo Simulation Results

Metric	Low Clutter	High Clutter
Platform position avg. RMSE (m)	0.81	0.90
Platform heading avg. RMSE (deg)	3.26	3.50
Landmark estimation MAE (m)	1.23	1.34
Landmark inclusion mean delay	2.45	3.22
Landmark removal mean delay	10.85	11.00
Mean (Max) false landmarks	0.13 (4)	3.02 (7)
Mean (Max) missed landmarks	0.2 (4)	0.23 (5)

Conclusions

M/N logic for landmark management

- Straightforward to be implemented
- Handle landmark initialization, maintenance, removal and merge in an consistent manner

Simulation Results

- Demonstrated in a car park scene for vehicle landmarks
- Capable of estimating pose of the mobile platform and landmark state (centroid location) simultaneously
- Manage landmarks in a consistent manner

Code available at: https://github.com/shuai000/SLAM_LandmarkManagement Methods

Simulation Results

Thank you for listening

Sun et al. Radar SLAM Landmark Management APSIP

APSIPA 9th November 2022 11 / 11