
Motor Imagery Observed by fNIRS
Chi Sang Choy

School of Engineering
RMIT University

Melbourne, Australia
chi.sang.choy@student.rmit.edu.au

Zixin Ye
Dept. Biomedical Engineering

Shantou University
Shantou, China
o120n@qq.com

Ziyang Huang
Dept. Biomedical Engineering

Shantou University
Shantou, China

1258914096@qq.com

Qifeng Zheng
Dept. Biomedical Engineering

Shantou University
Shantou, China

1509956918@qq.com

Qiang Fang
Dept. Biomedical Engineering

Shantou University
Shantou, China

qiangfang@stu.edu.cn

Seedahmed S. Mahmoud
Dept. Biomedical Engineering

Shantou University
Shantou, China

mahmoud@stu.edu.cn

Katrina Neville
School of Engineering

RMIT University
Melbourne, Australia

katrina.neville@rmit.edu.au

Beth Jelfs
Dept. Electronic, Electrical &

Systems Engineering
University of Birmingham

Birmingham, United Kingdom
b.jelfs@bham.ac.uk

Abstract—Motor imagery (MI) is expected to activate brain
areas related to motor functions, yet, the brain is constantly active
to some extent leading to difficulties in differentiating MI from
supposedly non-motor tasks. In this study, we use functional near-
infrared spectroscopy (fNIRS) to offer an objective and spatially
precise measurement of brain activity during MI. The fNIRS
findings of this study using our MI-based exercise framework
with 15 healthy subjects indicate that casual imagination and
especially relaxation do not induce an intense motor brain
activation compared to active MI performance. Furthermore,
dynamic visual cues for MI appear to enhance brain activation
around the motor brain areas of the majority of subjects and
MI training helps some subjects to activate their motor cortex.
Future research may refer to our framework to validate the
competence of stroke patients in MI-based motor rehabilitation.

Index Terms—motor imagery, fNIRS, brain, activation, neuro-
plasticity

I. INTRODUCTION

Motor imagery (MI) is the ability to mentally perform a
movement [1]. MI primarily activates the brain areas respon-
sible for motor processes and hence, can be a useful tool for
motor recovery by triggering neuroplasticity. MI is particularly
valuable when it comes to motor disabilities as MI does not
require physical movement. MI is however, often a difficult
task to perform well and requires practice [2]. Dynamic visual
cues are often applied to assist MI by inducing an illusion of
real movement that matches the MI task [1].

Despite the potential benefits of MI, there are limited studies
that explicitly investigate the level of engagement of subjects
during MI [2]. As the human mind is often unconsciously
stimulated and there is no consensus on the essential neural
substrates of MI compared to other motor processes, further re-
search regarding the nature of MI is required [2]. Furthermore,
the American Guidelines for Adult Stroke Rehabilitation and
Recovery classify MI only as a reasonable adjunct to upper
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extremity and hemispatial neglect rehabilitation, with some
conflicting evidence from multiple randomised clinical trials
or meta-analyses [3]. To enable the study of the efficacy of
MI, the ability to measure the activity in the brain during MI
is required. Functional near-infrared spectroscopy (fNIRS) is a
non-invasive and portable neuroimaging technique for study-
ing cerebral oxygentation and haemodynamics [4]. fNIRS is
more portable than fMRI; thus, fNIRS is relatively more
accessible and compatible with experiments involving action
observation via a computer display [1]. fNIRS also provides a
higher spatial resolution than EEG; hence, fNIRS is ideal for
locating brain activation induced by MI which is associated
with a higher concentration of oxygenated haemoglobin [4].

In this paper we present a fNIRS study of brain activities
across the whole scalp during MI and compare the results
to that of relaxation and casual imagination. This aims to
reinforce the validity of actively using MI to activate the motor
cortex. Furthermore, our findings from 15 healthy subjects
indicate that MI effectiveness could be influenced by training
and the level of fatigue. Visual aids assist most subjects to
perform MI. These results offer a basis for evaluating the
practicality of MI in stroke rehabilitation in the future.

II. EXPERIMENTAL PROTOCOL

The experimental protocol was approved by Shantou Uni-
versity, China in accordance with the Helsinki Declaration and
all subjects provided written consent before the experiment. 15
healthy subjects participated in the study, 6 male and 9 female
with age range 19 to 23 years (M=20.4, SD=1.2).

A. fNIRS Data Collection

fNIRS data were collected using a LIGHTNIRS system
(Shimadzu Corporation, Japan) consisting of 8 source-detector
pairs with a sampling rate of 4.44 Hz. The device simultane-
ously measures three different wavelengths of light at 780 nm,
830 nm and 805 nm allowing changes in deoxygenated, oxy-
genated and total haemoglobin concentration to be calculated.
To cover the whole scalp, 14 fNIRS channels were used each
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Fig. 1: Flowchart showing the voice-over video experiment sequence and 6 related 20-second tasks performed by participants.
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Fig. 2: fNIRS data processing pipeline.

with a source and a detector separated by 3 cm. The channels
approximately correspond to EEG channels: Fz, AF4h, AF3h,
Fpz, C1, FC3, CP3, C5, PO1, PO2, C2, CP4, FC4 and C6.

B. Experimental Design

The subjects were seated comfortably in front of a screen
on which was shown a voice-over video to instruct subjects
throughout the experiment. Fig. 1 illustrates the timeline of
these instructions and the 6 tasks the subjects were asked to
perform. All tasks were 20 seconds in duration and performed
with their eyes closed. In brief after the introduction of the
experiment, the subjects was asked to relax (relax). Next
random scenery photos were displayed after which the subjects
imagined whatever they chose (casual). Following this the
subjects were instructed by both audio and text to imagine
reaching with both hands for a cup of water on the table
in front of them and bringing it towards their mouth (MI1).
After a 2-minute rest and then a video showing the same task,
the MI was repeated (MI2). Finally, the subjects underwent
MI training involving an explanation of MI in the first-person
perspective which they practiced 5 times, followed by a 5-
minute rest. The first-person perspective was chosen as it is
the most effective form of MI for activating the motor region
of the brain [2]. The subjects then repeated the MI task twice
more after the MI training (MI3 & MI4). An after session
survey was conducted based on item 3 (External Visual), item
7 (Kinaesthetic) and item 11 (Internal Visual) of the motor
imagery questionnaire 3 (MIQ-3) [5].

III. DATA PREPROCESSING

The ∆HbO2 data corresponding to the tasks specified by
the experimental timeline as shown in Fig. 1 are extracted.

The fNIRS data processing pipeline used in this study
is shown in Fig 2. The LIGHTNIRS system automatically
converts the raw light intensity data to changes in optical
density (∆ODλ), and then to changes in oxygenated and

dexoygenated haemoglobin concentration (∆HbO2 and ∆Hb)
in units of mM · cm using the following formula [6]:[

∆HbO2

∆Hb

]
=

[
−1.489 0.597 1.485
1.855 −0.239 −1.095

]∆OD780

∆OD805

∆OD830

 .

(1)
Motion of the subject causes artifacts in the signal, which

are much larger than that of non-motion noise [7]. To correct
for these the temporal derivative distribution repair (TDDR)
is applied. TDDR is effective at removing spikes and baseline
shifts while not requiring any tuning parameters [7]. First, a
3rd order low-pass Butterworth filter with a cut-off frequency
of 0.5 Hz is applied to extract the low frequency signal for
correction. The corrected signal is then obtained as the sum
of the corrected centred low frequency signal, the uncorrected
high frequency signal and the mean of the original signal.

Following TDDR any physiological noise is removed by
filtering. A 6th order Butterworth filter was chosen for the flat
frequency response in the passband. First a low-pass filter with
an upper bound of 0.9 Hz is applied to minimise heart rate
noise [4]. Then two band-stop filters with stop-band ranges
[0.07 0.13] Hz and [0.2 0.4] Hz are applied to remove the
Mayer waves and respiratory frequency noises respectively [4].

IV. DATA ANALYSIS

An objective of this study is to verify whether MI is
distinguishable from casual imagination and relaxation by
comparing the activity across the whole brain during different
experimental tasks. To compare the effects of the different
tasks the changes in haemoglobin concentration reflected by
the preprocessed ∆HbO2 data were used in the analysis. As
the brain may unintentionally be active even during relaxation
no task in this experiment is assumed to be a baseline [1], [2].

As the aim of MI is to stimulate the motor cortex, the
average ∆HbO2 during each of the 6 different experimental
tasks in this study was respectively calculated across all chan-
nels and samples of the motor cortex. Statistical significance
between each pair of tasks was computed using the Python
package statannotations [8]. The Wilcoxon signed-rank test is
non-parametric, thus, ideal for comparing two conditions for
the same subjects without assuming normality of samples [9].

The intensity of brain activation is directly proportional
to ∆HbO2 [4]. To investigate the effects of the different
tasks across the brain, the Python MNE library was used to
produce scalp maps of the preprocessed ∆HbO2 averaged
over all samples within each channel for every subject [10].
Then, to allow the different tasks to be compared without
intersubject variability, the average ∆HbO2 of each subject



Fig. 3: Box plot of the average ∆HbO2 over the motor
cortex of 15 subjects, respectively, for each experimental task,
with the Wilcoxon signed-rank test statistical significance.
ns: 0.005 < p ≤ 1.0; *: 0.001 < p ≤ 0.005; **: 0.0001 <
p ≤ 0.001; ***: 0.00001 < p ≤ 0.0001; ****: p ≤ 0.00001.

was normalized with respect to the subject’s own maximum
and minimum ∆HbO2 (respectively = 1 and -1) relative to all
experimental tasks. However, some channels had low signal-
to-noise ratio (S/N). This may be attributed to subjects’ dense
hair follicles and dark hair absorbing too much light [6].
Therefore only subjects having at least a channel with optimal
S/N for each of the frontal, motor and occipital cortices were
included to estimate an overall brain pattern via scalp maps.

V. RESULTS & DISCUSSION

Fig. 3 is a boxplot containing ∆HbO2 averaged over the
motor cortex from each of the 15 subjects for all experimental
tasks. The average ∆HbO2 of the 15 subjects for all MI tasks
are higher overall than that of relax and casual with signif-
icant p-values. This indicates the efficacy of MI at activating
the motor cortex. The null hypothesis that the ∆HbO2 of
relax is the same as that of MI-based tasks is rejected. For 3
of the 4 MI tasks when comparing the ∆HbO2 with casual
the p-values are statistically significant, rejecting that actively
performing MI and casual imagination are the same.

Fig. 4 shows scalp maps of normalised ∆HbO2 for subjects
1 to 5, 12, 14 and 15. All of the scalp maps show that the
subject’s brain is least active during relax and most subjects
have low brain activity during casual. Only subject 1 has a
greater brain activity around the motor cortex during casual
than that of MI tasks; however, this could be a result of
thinking visually of the random photos which had just been
presented as Fig. 4(a) indicates an active occipital area during
casual. Subjects 5, 12, 14 and 15 have higher brain activity
around the frontal and motor areas during MI2 which could
indicate the assistance of watching the MI video instruction.

The effects of the MI training were mixed. For subjects 1
to 3 there was clear benefit from training when it came to
successfully performing MI. Prior to training, MI1 and MI2
do not induce any greater brain activities than during casual as
illustrated by Figs. 4(a–c). However, after training, subjects 1
to 3’s brains are more active during MI4 compared with MI2.

This highlights that without understanding of MI, different
types of imagery may be performed. Regardless of the cues
presented in any form, untrained subjects are often unable to
distinguish between a 1st and a 3rd person perspective MI, or
the difference between visual imagery and MI [2]. Figs. 4(d–
h) indicate MI training being less effective for subjects 4,
5, 12, 14 and 15, which could be due to post-MI fatigue.
Subjects 4 and 12 in particular show brain activity during MI3
and MI4 comparable to that of relax and casual, possibly
caused by mental withdrawal from prolonged MI. The post-
session survey reaffirms that subjects experience difficulty in
kinaesthetic MI, that is, feeling their targeted muscles while
attempting to perform MI. However, all MI tasks induce
more intense brain activity than during relax and casual for
subjects 2, 3, 5, 14 and 15 as shown in Fig. 4.

VI. CONCLUSIONS

As indicated by the normalised ∆HbO2 scalp maps of
Fig. 4 and the box plot of Fig. 3, for all 15 subjects in this
study the motor brain areas may be activated by MI. Casual
imagination generally does not activate the motor cortex as
effectively as active MI performance. Moreover, all subjects
show minimal activation in the motor cortex during relax
and casual compared to MI tasks, illustrating that MI induces
brain patterns distinctive from random thoughts. Although MI
could be difficult for subjects who lack understanding of MI or
experience fatigue, the brain patterns shown in Fig. 4 appear
to be supportive of visual aids and MI training. We propose
to use this work as a basis for future research on the quality
of MI with appropriate training and visuals in rehabilitation.
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Fig. 4: Scalp maps of ∆HbO2 normalised relative to all experimental tasks (maximum = 1; minimum = −1). Only those
subjects having at least one fNIRS channel with optimal signal-to-noise ratio for each of the frontal, motor and occipital areas
are shown. Maps are oriented with the frontal area to the top of the page.


