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Abstract

Background: Motor impairment is a common consequence of stroke causing difficulty in
independent movement. The first month of post-stroke rehabilitation is the most effective period
for recovery. Movement imagination, known as motor imagery, in combination with virtual reality
may provide a way for stroke patients with severe motor disabilities to begin rehabilitation.

Methods: The aim of this study is to verify whether motor imagery and virtual reality help to
activate stroke patients’ motor cortex. 16 acute/subacute (< 6 months) stroke patients
participated in this study. All participants performed motor imagery of basketball shooting which
involved the following tasks: listening to audio instruction only, watching a basketball shooting
animation in 3D with audio, and also performing motor imagery afterwards.
Electroencephalogram (EEG) was recorded for analysis of motor-related features of the brain such
as power spectral analysis in the α and β frequency bands and spectral entropy. 18 EEG channels
over the motor cortex were used for all stroke patients.

Results: All results are normalised relative to all tasks for each participant. The power spectral
densities peak near the α band for all participants and also the β band for some participants.
Tasks with instructions during motor imagery generally show greater power spectral peaks. The
p-values of the Wilcoxon signed-rank test for band power comparison from the 18 EEG channels
between different pairs of tasks show a 0.01 significance of rejecting the band powers being the
same for most tasks done by stroke subjects. The motor cortex of most stroke patients is more
active when virtual reality is involved during motor imagery as indicated by their respective scalp
maps of band power and spectral entropy.

Conclusion: The resulting activation of stroke patient’s motor cortices in this study reveals
evidence that it is induced by imagination of movement and virtual reality supports motor
imagery. The framework of the current study also provides an efficient way to investigate motor
imagery and virtual reality during post-stroke rehabilitation.

Keywords: stroke; motor imagery; virtual reality; EEG; rehabilitation; motor recovery;
neuroplasticity; Brunnstrom; spectral analysis; entropy

1 Background
Stroke is a brain lesion which generally causes disability and even death [1,2]. Motor impairment is

a common consequence of stroke affecting stroke patients’ ability to live independently [3, 4]. The
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major mechanism behind post-stroke recovery is neuroplasticity which rewires the neural network of

the brain [5,6]. Early motor rehabilitation is essential to effectively restore motor function of stroke

patients because neuroplasticity is most active within the first month post-stroke [2, 6, 7]. Initially,

mobility of stroke patients is minimal; often they are not able to instigate any movement [2,8]. There

are six Brunnstrom motor recovery stages (BMRS) which describe different levels of mobility [2].

Stroke patients who cannot initiate any movement from affected body parts are classified in stage

1 of the BMRS [2]. Conventional post-stroke rehabilitation that relies on physical movement may

be ineffective during the early stage of post-stroke motor recovery because stroke patients are often

severely paralysed and unable to participate in physical rehabilitation [2, 8, 9].

Motor imagery (MI) is the mental representation of a body movement [6]. In MI, a patient is

required to mentally rehearse a movement without its physical execution [3, 4]. It was suggested

that MI could promote recovery of the lesioned brain areas using functional and other neuronal

networks; hence, MI appears to be an effective alternative therapy for early post-stroke motor

rehabilitation [5, 7]. However, MI requires training and may be challenging particularly for stroke

patients [10].

It was shown that observing an action may activate the motor cortex and promote motor learning;

thus, facilitating neural recovery [3, 11]. This is due to the mirror neurons being activated during

both action execution and observation [3, 11]. The mirror neuron system assists the observer to

imitate an observed action; hence, there may be an overlap between action observation (AO) and

the process of performing a physical movement [3, 11]. It was also reported that AO via virtual

reality (VR) technology could assist stroke patients to focus on MI tasks by visually simulating real

movements within an immersive environment, minimising distractions from the surroundings, thus,

potentially reducing the difficulty of conventional MI [10, 12]. VR technology has also been shown

to assist stroke patients in a minimally conscious state to perform MI [9]. As a result, combining

MI and AO for performing the same movement may enhance activation of the motor cortex and

facilitate motor recovery of stroke patients, especially in stage 1 of the BMRS [4,5,10]. Despite there

being positive evidence of VR assisted MI in post-stroke rehabilitation, the experimental protocol

of different studies is not standardised and involves various VR machineries [8,10,12]. The findings

of different VR-MI studies are not conclusive though promising.

Physiological measure of MI recorded by electroencephalogram (EEG) provides a relatively ac-

cessible and objective way to measure brain signals induced by MI with a high temporal resolu-

tion [10,12–16]. In this study, we apply filters as well as both EEG spectra and entropy analyses to

investigate whether MI and VR may help to activate the brain areas responsible for motor functions;

thus, potentially promoting motor recovery.

2 Results
The 18 EEG channels covering the motor brain areas shown in Fig. 5 are considered in computing

the periodograms and band powers for stroke patients as movement processes mainly involve the

motor cortex [8,10]. Fig. 1 shows all subjects’ epoch-averaged periodograms normalised with respect
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Table 1: Results of the Wilcoxon signed-ranked test between different tasks in the α and β frequency

bands from the 18 EEG channels on the motor brain areas of stroke subjects. Significant results

with a p-value < 0.01 are indicated in bold.

α; Subject VOICE VOICE VOICE MI after VOICE MI after VOICE VR+MI
No. MI after VOICE VR+MI MI after VR VR+MI MI after VR MI after VR

1 0.899 <0.001 <0.001 <0.001 <0.001 0.154
2 0.196 <0.001 <0.001 <0.001 0.002 0.442
3 0.640 <0.001 0.130 0.024 0.099 0.551
4 1 0.034 0.039 0.024 0.060 0.417
5 0.014 <0.001 0.001 <0.001 <0.001 0.009
6 0.054 <0.001 0.001 <0.001 <0.001 0.030
7 0.024 <0.001 0.001 <0.001 <0.001 0.671
8 0.671 – 0.001 – 0.048 –
9 0.002 – <0.001 – 0.369 –
10 0.229 – 0.671 – 0.021 –
11 0.012 – <0.001 – <0.001 –
12 0.081 – 0.006 – 0.551 –
13 0.001 – <0.001 – <0.001 –
14 0.081 – <0.001 – <0.001 –
15 <0.001 – <0.001 – 0.043 –
16 0.108 – <0.001 – <0.001 –

β; Subject VOICE VOICE VOICE MI after VOICE MI after VOICE VR+MI
No. MI after VOICE VR+MI MI after VR VR+MI MI after VR MI after VR

1 0.734 <0.001 <0.001 <0.001 <0.001 0.265
2 0.016 <0.001 <0.001 <0.001 <0.001 0.054
3 0.018 0.002 0.060 0.932 0.495 0.865
4 0.016 <0.004 0.393 0.468 0.119 0.016
5 0.021 <0.001 <0.001 0.001 0.001 0.001
6 0.039 0.001 <0.001 <0.001 <0.001 0.167
7 0.027 <0.001 <0.001 <0.001 <0.001 0.766
8 0.054 – 0.014 – <0.001 –
9 0.030 – 0.090 – 0.001 –
10 0.060 – 0.417 – 0.012 –
11 0.001 – <0.001 – <0.001 –
12 <0.001 – <0.001 – 0.304 –
13 <0.001 – <0.001 – 0.001 –
14 0.265 – 0.229 – 0.018 –
15 <0.001 – 0.212 – 0.012 –
16 <0.001 – <0.001 – <0.001 –

to the subjects’ own experimental tasks in this study: VOICE, MI after VOICE, VR+MI, and MI

after VR, with 1 = the maximum and -1 = the minimum. Table 1 presents the p-values of the

Wilcoxon signed-rank test for comparing the α and β band powers associated with different pairs

of tasks performed by the stroke patients. Figs. 2 and 3 are respectively the normalised α and β

band power scalp maps relative to all classes in Experiment 1 for stroke patients 2 and 3 and in

Experiment 2 for stroke patients 8 and 10. Fig. 4 shows the spectral entropy scalp maps normalised

to all classes in Experiments 1 and 2, respectively.
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3 Discussion
The experiments of this study aim to guide participants to mentally perform a basketball shooting

movement which they cannot perform physically. Bimanual basketball shooting is selected as the

MI task to mimic a sport activity involving the upper limbs. Mentally performing a sport involving

both hands may actively promote both hemispheres of the brain to be activated, maximising brain

activity of the motor cortex, especially for non-experts [3, 6, 17–21]. An upper limb MI is chosen

because a larger area of the motor cortex is activated to control upper limbs, thus has been shown

to be more effective in motor function recovery than that of lower limbs [3, 6, 22]. The basketball

shooting instruction provided in the current study prompts participants to activate their motor

cortex by gradually guiding them to imagine the movement in a few steps. Stroke patients have

suffered brain damage, so movement instruction should be relatively straightforward and simulate

physical movement as much as possible to make the MI task practical [6,9,23–27]. A sport exercise

shown via video is used to induce a sense of embodiment and self-esteem from the stroke patients

by attempting to trigger the neural pathways for motor processes through the patients’ imagination

of performing a physical task that appears to be impossible [6, 8, 17, 18, 21, 28–30]. The activation

intensity distribution of the brain can be studied by power spectral density (PSD), band power and

spectral entropy of the EEG data that have been preprocessed [8, 31–33].

3.1 Power Spectral Density

Activation of the motor cortex is expected to induce signal peaks predominantly in the alpha (8-12

Hz) and beta (13-30 Hz) frequency bands as they correspond to motor-related processes [10,33–38].

Periodograms illustrate how each subject’s spectral power distribution changes across different

frequencies. A larger magnitude of intensity of spectral power peaks in the periodograms indicates

a greater brain activation at the corresponding frequencies. For stroke subjects, there are peaks in

the α and β frequency bands for all of the tasks. A power peak in either the α or the β band detected

from the motor cortex can itself be used as an indicator of motor-related processes [10,33–38]. There

is a peak in the 20-25 Hz range within the β band in all classes as illustrated in Fig. 1 (a-p). The

spectral power peaks in the α band are greater for MI after VR than those of other classes for

subjects 8, 9, 13 and 14, indicating VR assistance for MI. In Experiment 2, there is no assistance

provided to subjects performing MI after VR for approximately 5 minutes; hence, distractions and

fatigue may affect some subjects’ MI ability. MI after VOICE shows a distinctively greater peak in

the 20-25Hz range than that of both VOICE and MI after VR for subjects 11, 15 and 16, as shown

in Figs. 1(k), (o) and (p).

VR+MI in Experiment 1 provided visual and audio instructions in 3D while stroke patients

perform MI. There is a more prominent peak in 20-25 Hz for VR+MI and MI after VR than that

of other tasks for subjects 3 and 4 as shown in Figs. 1(c) and (d). VOICE may only be helpful

for subjects 5 to 7 from Experiment 1 as illustrated by their PSD′ peaks in the β band. MI after

VOICE shows no assistance for half of the subjects in Experiment 1 as indicated by its broad and

flat power spectrum as illustrated in Figs. 1(a–g). This may again due to attention deficiency when

no cues for MI are given at all.
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3.2 Band Power

Band powers provide an overall representation of PSD patterns. Greater α and β band powers

correspond to more intense motor-related brain activation [10, 33, 34]. The Wilcoxon signed-rank

test is non-parametric which is ideal for comparing two conditions for the same participants without

assuming normality of samples [39]. The results indicate that there is a 0.01 significance of rejecting

the null hypothesis that VR+MI (or MI after VR) and MI after VOICE have the same band

powers for almost all stroke subjects; however, VOICE and MI after VOICE have more similar

band powers. Similarly, VR+MI and MI after VR also have more similar band powers as indicated

by their p-values not reaching the 0.01 significance level.

Stroke patients 2, 3, 8 and 10 are illustrative of the types of responses seen in all patients. A

higher value of band power (red) corresponds to more intense brain activation. The other stroke

patients from Experiment 1 show similar brain activity to stroke patients 2 and 3. Most Experiment

1 stroke patients’ brain activities are similar to stroke patient 2’s, with the motor cortex being less

active during MI+VR and MI after VR, as shown in the first row of Figs. 2 and 3, and Figs. 1 and 2

of Additional file 1. This could be attributed to some stroke patients performing visual imagery

(VI) because of their lack of understanding of MI, therefore decreasing activity in the motor cortex.

Stroke patient 2 may not be able to focus on MI even with VR assistance. Whereas, the motor

cortex of stroke patient 3 is more active during MI after VR and MI after VOICE in Experiment

1. Performing MI after VR is present appears to help stroke patient 3 to activate the motor cortex

near channel C4 as illustrated by more intense α band power.

Stroke patients 8 and 10 share similarities with the other stroke patients from Experiment 2. The

motor cortex of stroke patient 8 during MI after VR in Experiment 2 is overall more activated in the

α and β bands compared to other classes without VR as shown in Figs. 2 and 3. Stroke patient 10

does not reflect any assistance of VR in MI induced brain activation in the motor cortex compared

to MI without VR as shown in Figs. 2 and 3.

Stroke patients 3 and 8 are illustrative of most stroke patients’ brain activities in the α and β

bands, achieving maximum band power for conditions involving VR; whereas, a small number of

stroke patients have similar band power scalp maps as stroke patient 10, not activating the motor

cortex during MI after VR as illustrated in Figs. 1 to 4 of Additional file 1.

3.3 Spectral Entropy

Entropy in a biological process measures the complexity of a physiological signal [40–45]. Brain

activation is associated with peaks in the α and β band of a power spectrum; hence, spectral entropy

is used to study brain activation by analysing power spectral patterns. A power spectrum with a

pattern identical to that of a single frequency component such as a sinusoid has the smallest spectral

entropy [31,32]. On the contrary, a flat power spectrum having all frequency components with equal

power like that of white noise corresponds to the greatest spectral entropy [31, 32]. A higher value

of spectral entropy represents a more uniform and flatter power spectrum distribution [31, 46, 47].

Spectral entropy is a measure of the regularity of a power spectrum which should be interpreted
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together with spectral power analysis. A lower value of spectral entropy (blue) is associated with

more intense brain activity if the associated band power is closer to maximum.

Most stroke patients’ brain patterns are similar to stroke patients 3 and 8 having the lowest

spectral entropy values for VR assisted MI; whereas, some stroke patients are similar to stroke

patient 10 with higher spectral entropy values for VR assisted MI as shown in Figs. 5 and 6 of

Additional file 1. VR potentially assists most stroke patients to activate their motor cortex during

MI, but is ineffective for some stroke patients as indicated by Figs. 2, 3 and 4.

4 Conclusions
MI may activate the motor brain areas of stroke patients as deduced by their normalised PSD, band

power and spectral entropy computed in this study. The PSD′ peaks, maximum band power and

minimum spectral entropy are present in the motor-related α and β frequency bands for most of the

16 (acute/subacute) stroke patients’ motor cortices during VR assisted MI indicating more intense

brain activation than that of MI alone. The p-values of the Wilcoxon signed-rank test associated

with α and β band powers between the conditions in Experiments 1 and 2 of this study respectively

achieve a 0.01 significance for most stroke patients indicating that MI tasks involving VR and

without VR do not have the same brain activation pattern. VR is potentially an effective tool for

assisting MI performance. MI in combination with VR could be particularly beneficial for stroke

patients without other rehabilitative options because of their severe motor impairment. Future

research may investigate the effects of fatigue and sensory distractions during shorter or longer MI

experiments [26,27,48–52]. Nonetheless, the results and framework of this study are useful for future

work which may provide new insights in the applicability of MI and VR in stroke rehabilitation.

5 Methods
5.1 Experimental Protocol

5.1.1 Participants

Experiments on stroke patients were conducted at Jiaxing 2nd hospital in China in April and July

2021 [53]. These experiments were approved by the Ethics Committee of Jiaxing 2nd Hospital

Rehabilitation Centre in accordance with the Declaration of Helsinki. All stroke patients gave

informed consent before participating in the study. The experiment could be terminated whenever

the participants felt unwell with symptoms such as nausea. An initial assessment of upper limb

mobility of stroke patients based on the BMRS and the mini-mental state examination (MMSE) for

cognitive function were performed by medical doctors. All participants’ demographics are shown in

Table 2 according to the following enrolment criteria:

i Subjects were over 18 years old.

ii Subjects were in stage I, II or III of the Brunnstrom stages of stroke recovery.

iii Subjects have normal vital signs and with sufficient vision and hearing to follow instructions as

determined by medical doctors using the MMSE assessment with a minimum threshold score

of 10 [9, 54,55].
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Table 2: Demographic information for the (Experiments 1 & 2) stroke participants.

Subject Gender Age Affected Stroke Brunnstrom Post-Stroke MMSE
No. Side Condition Stage (months) Score

Experiment 1

1 Male 74 Right Left basal ganglia haemorrhage I 4 26

2 Male 46 Right Left basal ganglia haemorrhage III 5 30

3 Male 52 Right Left basal ganglia haemorrhage II 2 30

4 Male 70 Left Right basal ganglia haemorrhage II <1 30
& parietal ventricular cerebral infarction

5 Male 71 Left Right basal ganglia II 1 30
& parietal ventricular foci of encephalomalacia

6 Male 70 Left Right cerebral peduncle foci infarction I 1 30

7 Female 63 Right Left basal ganglia III 5 30
& parietal ventricular mulitple scattered foci infarction

Experiment 2

8 Female 52 Left Right basal ganglia cerebral haemorrhage II 4.5 30

9 Male 58 Right Left basal ganglia ventricular haemorrhage II 2.5 30

10 Male 48 Left Brain stem & right corpus callosum cerebral infarction I 1.5 30
& bilateral paraventricular foci ischemia

11 Female 50 Left Right basal ganglia haemorrhage I 2 30

12 Male 68 Right Bilateral paraventricular & lacunar foci ischemia I 2 13

13 Male 61 Right Bilateral lateral ventricular foci ischemia I 1 30

14 Male 37 Right Left basal ganglia foci infarction I 1 30

15 Female 86 Right Left lateral thalamic haemorrhage II 1 16

16 Female 76 Right Left basal ganglia lacunar infarction I 1 30

Only adult stroke patients with stable vitals were recruited by clinicians to minimise unforeseen

paediatric medical complications. MI is most beneficial for stroke patients with no or minimal

physical movement which persists through the first 3 BMRS. Most stroke patients in this study

achieve either a MMSE score corresponding to normal cognitive function, i.e., above 25 or even 30,

the maximum. Only stroke patients 12 and 15 have a MMSE score in the range 10 to 19 indicating

potentially moderate, but not severe, cognitive impairment [9, 54,55].

5.1.2 Data Collection

A g.HIamp (from g.tec, Austria) with 80 wet electrode channels arranged in the standard interna-

tional 10-10 configuration at a sampling rate of 1200 Hz were used to record EEG data from all

stroke patients. Fig. 5 shows the following 18 EEG channels used for this study covering the motor

brain areas: FC1, FC2, FC3, FC4, FC5, FC6, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5,

and CP6. The reference channel is attached to the left earlobe and Cz is the ground channel.

The EEG collected from each task of the experiment were saved as one-minute files where each

file corresponded to 1 trial for stroke patients. The number of trials for stroke patients are shown

in Experiments 1 and 2 of Fig. 6.
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5.1.3 Experimental Design

Subjects wore the EEG devices and were lying down on a bed during the experiments. The current

study consists of 2 experiments as shown in Fig. 6 illustrating the periods of EEG measurement

and their associated experimental tasks. The break period is 1 day for Experiment 1 and 15-20

minutes for Experiments 2. The (Mandarin Chinese) audio and video instructions, designed by

Shantou University using Assembly-CSharp API from Unity [56], were given in a few steps as

shown in Fig. 7. For tasks involving VR (in 3D), subjects wore a head-mounted display centred in

a VR environment made by HTC VIVE PRO EYE with the helmet-mounted display (HMD) of

1440×1600 resolution per eye and 110°Field of view. Further details of the respective tasks of the

experiments are provided in the following:

VOICE The subject wears headphones and listens to the voice instructions (in Chinese) which

describes a sequence of movements for the purpose of shooting a basketball with both hands.

i.e. hands reaching and holding the ball, lifting the ball, increasing arm strength, then shooting

the ball. The voice instruction is played three times, each time lasts for 1 minute and it is the

same audio used in the video instruction from cues (a) to (d) shown in Fig. 7. 3 trials were

performed for all experiments.

MI after VOICE The subject was asked to imagine the movement associated with the voice

instruction immediately after the end of the voice instruction. All experiments had 2 trials

performed.

VR+MI In addition to the voice guidance, the subject wore the head-mounted display and ob-

served the animation corresponding to the voice instruction for shooting a basketball while

imagining the associated movement simultaneously. Fig. 7 illustrates the timeline of the video

instruction with cues showing the general structure of the whole video. Firstly, there is a text

instruction which lasts for 1 minute. Secondly, a 3-2-1 countdown appears, then the video

is played in sync with the voice instruction having another 3-2-1 countdown before shooting

the basketball from cues (a) to (d) of Fig. 7. Finally, a congratulatory message follows the

basketball shooting. There were 3 trials for VR+MI as only text instruction was presented in

the first minute of EEG recording as shown in Experiment 1 of Fig 6.

MI after VR In this task, the subject performs MI of shooting the basketball after watching the

corresponding 3D video from the head-mounted display. Each minute of EEG recording is

considered 1 trial as depicted in Fig. 6.

5.2 Data Preprocessing

Fig. 8 shows the general procedure for processing EEG data in the current study. Raw EEG is

extracted as input data. At the beginning of each trial, the EEG recordings contain noise interference

caused by the machinery or other sources; furthermore, trial recordings do not contain exactly the

same number of samples. As a result, only samples from the first 6th second to the 51st second of

each trial are considered for noise removal and consistency. The data are shaped as 1-second epochs

× channels × samples for efficiency [33].
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The samples for stroke patients are downsampled from 1200 Hz to 200 Hz to reduce computational

complexity as usual human neural activities and the damping effects of the skull are at frequencies

less than 200 Hz [57, 58]. A 5th order Butterworth bandpass filter removes non-motor-related fre-

quency components of the signal outside 1 to 40 Hz as this range includes all relevant frequencies

for motor processes [59–61]. The flatness response of the Butterworth filter is suitable for preserving

the desired frequency range and eliminating irrelevant parts of the signal such as power-line at 50

or 60 Hz [60,62].

5.2.1 Wavelet Filter

The automatic tunable artifact removal (ATAR) algorithm is designed to remove artifacts of a

signal that does not rely on expert knowledge or manual identification of noisy EEG components

like ICA [63]. The ATAR algorithm provides a relatively objective way to remove artifacts from

the EEG data by utilising the EEG signal’s intrinsic parameters [63, 64]. The EEG signal is first

deconstructed into sets of wavelet coefficients by applying a discrete wavelet transform (DWT)

using the Daubechies wavelet 4 (db4) [61,63,64]. The decomposition level is 3 for stroke patients to

produce coefficients that are approximately associated with the frequency range: 1 to 35 Hz. db4

is relatively smooth which is effective for detecting EEG variations [64]. A linear attenuation filter

is applied to either remove or adjust wavelet coefficients that are large according to the following

threshold functions [63,64].

ψA (r, k1, k2) =

fB(r), if fB(r) ≥ k1

k1, otherwise
(1)

and ψB = 2ψA,

fB(r) = k2e
B
(

100r
2k2

)
, (2)

where r is the interquartile range of ω. B=0.1 is the attenuation constant (steepness) between 0 and

1. A higher value of β makes the ATAR algorithm more aggressive in artifact removal. β=0.1, the

default setting, is close to 0 which prevents loss of signal. k1 = 8 Hz and k2 = 35 Hz are the lower

and upper frequency bounds to narrow the motor-related components, respectively [61,63,64]. The

interquartile range of wavelet coefficients, r, applied in the threshold function effectively reduce the

outliers outside of r and retain the core features of the signal [61, 64]. The linear attenuation filter

function is given by

λa (ω, r, k1, k2) =


ω, |ω| ≤ ψA

sgn(ω)ψA

(
1− |ω|−ψA

ψB−ψA

)
, ψA < |ω| ≤ ψB

0, otherwise

(3)
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where sgn(·) is the signum function. Finally, the filtered wavelet coefficients are used to reconstruct

the signal by using the inverse wavelet transform.

The attenuation filter function, λα, involves the lower and upper bounds on the threshold value:

k1 and k2, respectively [63,64]. β is the attenuation constant (steepness). k1=8 Hz and k2=35 Hz.

r is the interquartile range of wavelet coefficients [61, 63, 64]. Finally, the first set of the wavelet

coefficients is chosen to reconstruct the signal as it is best corresponded with the frequency range:

1 to 40 Hz [61,63,64].

5.3 Data Analysis

Periodograms of the stroke patients are respectively averaged over all epochs for each of the different

experimental tasks and are normalised by the minimum-maximum feature scaling function

x′ = 2
x− xmin

xmax − xmin
− 1 (4)

with respect to the tasks shown in Fig. 6: VOICE, MI after VOICE, VR+MI, and MI after VR,

with 1 = the maximum and -1 = the minimum. Power spectral densities of the preprocessed signal

across frequencies is computed by Welch’s method using a Hamming window with zero padding to

smooth the output. Simpson’s rule was used to calculate the band powers in the α and β bands

by summing the PSD in the respective frequency range [65]. The Wilcoxon signed-rank test was

used to compare different pairs of tasks performed by stroke patients with the associated p-values

given in Table 1 for the α and β bands. The Python MNE library is used to compute the scalp

maps for the α and β band powers of each stroke patient [66]. The band powers are normalised

by equation 4, the minimum-maximum feature scaling function, where band powers from all tasks

shown in Fig. 6 are considered for each experiment, respectively.

The Python package: antropy is used to compute spectral entropy [67]. Spectral entropy utilises

Shannon entropy and the signal’s power spectrum to compute the regularity of the time series

corresponding to the uniformity of power spectrum distribution as shown in equation 5 [31, 32, 41,

46,68].

Hspec = −
fn∑
f0

p̂(f)log2(p̂(f)); p̂(f) =
p(f)∑fn
f0
p(f)

(5)

where p(f) is the power spectral density; p̂(f) is the normalised power spectral density; f0 and

fn are respectively the first and last frequencies of the integrated frequency range; the logarithmic

base is 2 and the spectral entropy is in units of bits. The Python MNE library and equation 4 are

applied to compute the normalised spectral entropy relative to the experimental tasks specified in

Fig. 6 for each stroke patient.
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6 List of Abbreviations
• AO: action observation

• API: application programming interface

• ATAR: automatic tunable artifacts removal algorithm

• BMRS: Brunnstrom motor recovery stages

• 3D: 3 dimensional

• db4: Daubechies wavelet 4

• DWT: discrete wavelet transform

• EEG: electroencephalogram

• ICA: individual component analysis

• MI: motor imagery

• MMSE: mini-mental state examination

• PSD: power spectral density

• VI: visual imagery

• VR: virtual reality
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Additional Files
Additional file 1 — Scalp Maps for All Stroke Patients

Figs. 1 to 4 of this file are for the band power scalp maps of stroke patients 1 to 7 from Experiment 1 and stroke patients 8 to 16 from

Experiment 2. Figs. 5 and 6 of this file contain the spectral entropy scalp maps for stroke patients 1 to 7 from Experiment 1 and stroke

patients 8 to 16 from Experiment 2, respectively.
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8 (i) Subject 9

(j) Subject 10 (k) Subject 11 (l) Subject 12

(m) Subject 13 (n) Subject 14 (o) Subject 15

(p) Subject 16

Figure 1: Periodograms for each of the subjects from Experiment 1 (a to g) and Experiment 2

(h to p) showing their normalised power spectral densities (PSD′) across frequencies 1 to 40 Hz.

The legend for all plots is shown at the bottom right of this figure.



Choy et al. Page 16 of 20

Figure 2: α band power scalp maps of stroke patients 2, 3, 8 and 10 (top row to bottom row)

showing the intensity variations normalised relative to all classes from Experiments 1 and 2,

respectively. Red is 1 = maximum; blue is -1 = minimum.
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Figure 3: β band power scalp maps of stroke patients 2, 3, 8 and 10 (top row to bottom row)

showing the intensity variations normalised relative to all classes from Experiments 1 and 2,

respectively. Red is 1 = maximum; blue is -1 = minimum.
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Figure 4: Spectral entropy scalp maps of stroke patients 2, 3, 8 and 10 (top row to bottom

row) for frequencies 1-40 Hz showing the intensity variations normalised relative to classes from

Experiments 1 and 2, respectively. Red is 1 = maximum; blue is -1 = minimum.
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Figure 5: Diagram showing the electrode position distribution for stroke subjects.

Figure 6: Flowcharts showing the schematic of the experiments outlining the tasks performed by

the subjects, with each trial lasting 1 minute in duration. There are four tasks in Experiment

1: VOICE, MI after VOICE, VR+MI and MI after VR. There are three tasks in Experiment 2:

VOICE, MI after VOICE and MI after VR.
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(a) (b) (c) (d)

Figure 7: Flowchart showing the timing of the video for the VR+MI task. (a) to (d) are four

cues, the colors of the cues are consistent with the corresponding colors of the times at which

they occur in the experimental process.

Figure 8: Pipeline for EEG data preprocessing (green) and analysis (blue) applied in this study.


