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ABSTRACT2

Functional magnetic resonance imaging (fMRI) has shown that ageing disturbs healthy brain3
organization and functional connectivity. However, how this age-induced alteration impacts4
dynamic brain function interaction has not yet been fully investigated. Dynamic function network5
connectivity (DFNC) analysis can produce a brain representation based on the time-varying6
network connectivity changes, which can be further used to study the brain ageing mechanism7
for people at different age stages. Hence, this presented investigation examined the dynamic8
functional connectivity representation and its relationship with brain age for people at an elderly9
stage as well as in early adulthood. Specifically, the resting-state fMRI data from the University10
of North Carolina cohort of 34 young adults and 28 elderly participants were fed into a DFNC11
analysis pipeline. This DFNC pipeline forms an integrated dynamic functional connectivity (FC)12
analysis framework, which consists of brain functional network parcellation, dynamic FC feature13
extraction, and FC dynamics examination. The statistical analysis demonstrates that extensive14
dynamic connection changes in the elderly concerning the transient brain state and the method15
of functional interaction in the brain. In addition, various machine learning algorithms have been16
developed to verify the ability of dynamic FC features to distinguish the age stage. Results17
show that the fraction time of DFNC states has the highest performance, which can achieve a18
classification accuracy of over 88% by a decision tree. Furthermore, the dynamic FC alteration19
has been found to be correlated with mnemonic discrimination ability and could have an impact20
on the balance of functional integration and segregation.21

Keywords: Ageing, Dynamic functional network connectivity, Graph theory, Mnemonic Discrimination Ability, Functional integration22
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1 INTRODUCTION

Ageing has a profound influence on the brain’s structure and function at both local and global scales. These24
effects are responsible for decreased mental and physical fitness (Cole et al., 2018) and increased risk of25
neurodegenerative diseases such as Alzheimer’s disease (Abbott, 2011), or Parkinson’s disease (Reeve et al.,26
2014) (Dennis and Thompson, 2014). Functional magnetic resonance imaging (fMRI) is a powerful and27
efficient, accessible and non-invasive tool, which has been extensively used to reveal neural mechanisms28
engaged in the normal ageing process. It has also contributed greatly to elucidating the role that ageing29
plays in the decline of brain function (e.g., the cognitive (Uddin et al., 2017) or motor function (Thomason30
et al., 2008)). More precisely, resting-state fMRI studies have frequently reported altered connectivity both31
within-network and between-network. In human ageing the findings encountered include: the functional32
connectivity (FC) decreases within higher-order networks and segregation of networks diminishes with33
advancing age. For example, within the default network, the salience network, and the frontoparietal34
control network, FC has been reported to be reduced (Fjell et al., 2016; Grady et al., 2016). This FC35
alteration could be a sign of neural or functional network reorganisation, however, these findings rely36
on the static functional network connectivity analysis (SFNC). One potential limitation of SFNC is the37
theoretical assumption that the FC exhibits a constant state during a rest MRI period. This means that the38
fine-grained temporal evaluation of resting state has been neglected, and the flexibility of the functional39
network reorganisation cannot be assessed.40

Recently, with the advances in understanding of the temporal resolution of resting-state fMRI, the interest41
in how normal human ageing affects the time-varying or dynamic functional network connectivity (DFNC)42
has increased (Calhoun et al., 2014). For instance, the loss or decline of FC dynamics has been wildly43
found in the elderly adult group (Chen et al., 2017; Schaefer et al., 2014). This temporal variation of FC44
reflects the network flexibility necessary for brain function response, which fits our intuitive perception of45
the elderly who have the loss of physical flexibility. In contrast with SFNC, an advantage of DFNC is that46
it allows the fluctuation of FC, within or between the brain functional networks, over short periods to be47
observed. Identification of the FC fluctuation patterns allows the brain’s FC state profile to be identified.48
Following which, features characterizing the FC dynamics, such as the transition trajectories between49
distinct brain states (Allen et al., 2014; Vidaurre et al., 2021) can then be used to interpret brain behaviours.50

Given such a capacity, DFNC has been increasingly applied to brain ageing. For instance, the DFNC51
method has demonstrated that the FC dynamics degenerate in normal ageing. This degeneration is reflected52
by the lower switching rate between brain states within salience network (Snyder et al., 2021) and53
default network (Xia et al., 2019), as well as by the decreased connectivity flexibility in the right middle54
frontal gyrus (Yin et al., 2016). The FC dynamics has also been demonstrated to correlate with cognitive55
ability (Xia et al., 2019). Studies using DFNC methods have revealed other opinions regarding dynamic FC.56
For example, FC dynamics is usually characterized by the switching rate of connectivity states, which is57
defined as the rate at which a state transitions between potential functional brain states over a certain period.58
However, in a study investigating the human brain across the lifespan, for example, the switching rate of59
brain state was observed to have no difference between different age groups (Viviano et al., 2017). These60
distinct results are possibly due to differences in the implementation method and the data samples. While61
the results are not consistent, all these collected findings imply that the DFNC analysis is a promising62
method for providing insight into human ageing neuromechanisms from multiple views and means.63

Therefore, in this research, we explore the brains of two age-different groups with the DFNC method, to64
track the FC dynamics in the elderly over the MRI scan and to investigate the relationship between dynamic65
FC and age. Overall, we expect that the study of DFNC can reveal and track the change in flexibility of66
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function coordination and interaction in the elderly, and this alteration can facilitate brain age estimation at67
an individual level. This research also has the potential to form the basis for further investigations which68
may provide a deeper understanding of brain changes and ageing. This could offer clues to the relationship69
between brain maturity and brain behaviors as well as age-induced diseases.70

Specifically, the resting-state functional MRI data from 34 younger adults aged 19 to 22 and 28 elderly71
adults aged 60 to 80 have been tested by an implemented DFNC analysis pipeline. The fMRI data is used72
to identify the intrinsic connectivity networks (ICNs), from which the brain states are estimated and the73
dynamic features extracted. The alterations in FC dynamics caused by ageing were examined, and the74
power of dynamic features in individual age prediction was evaluated in this framework. In addition, we75
have also discussed the relationship between dynamic features and mnemonic discrimination ability and76
the dynamic balance of functional integration and segregation in healthy ageing.77

2 MATERIALS AND METHODS

2.1 fMRI acquisition78

Resting-state scans were obtained from the University of North Carolina samples at Greensboro1 after79
request, without any rights conflicts. The participants were 28 elderly adults (61–80 years old, mean age ±80
standard: 69.82±5.64; 20 female) and 34 young (18–32 years old, mean age ± standard deviation(SD):81
22.21±3.65; 20 female). Participants were instructed to lie motionlessly in the scanner and stay awake with82
their eyes open. All functional images were collected using a Siemens Trio 3.0T scanner with a 16-channel83
head coil and the following recording parameters: 32 slices with 4.0 mm thickness and no skip, time of84
echo = 30 ms; time of repetition (TR) = 2000 ms; flip angle = 70, field of view = 220 mm, matrix size = 7485
× 74 × 32 voxels, 300 volumes in 10 minutes.86

2.2 fMRI data preprocessing87

The data for each participant has 300 measurements recorded over 10 minutes. The first five volumes of88
each scan were discarded to allow for magnetic stability and thus to generate a steady blood oxygenation89
level-dependent activity signal. The functional data was then processed with the following steps:90

1. Realignment to correct head motion (see Section 2.3 for verification details).91
2. Slice time correction.92
3. Outlier identification.93
4. Normalization (normalize to 3 mm MNI space using a templates from the SPM software94

package (Ashburner and Friston, 2005)).95
5. Spatial smoothing with a Gaussian kernel of 8 mm full-width at half-maximum (FWHM).96

The processing pipeline was executed using the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon,97
2012).98

2.3 Verification of head motion correction99

To verify there was no significant head movement in the data, for each participant the individual mean100
and maximum framewise displacements (FD) (Power et al., 2012) were calculated. As the participants101
with large outlier scans have been removed from the raw data, none of the available participants had head102

1 https://openneuro.org/datasets/ds003871/versions/1.0.2
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motion greater than 0.5 mm. No significant group difference in FD was observable when comparing the103
final sample of 28 old adults and 34 young adults (p = 0.92).104

2.4 Static functional network connectivity analysis105

To assess static connectivity, pairwise Pearson correlations were computed over the entire timeseries106
and then Fisher’s Z-transformed. Group ICA-based was used to produce brain parcellations according to107
the same procedure as described in Section 2.5.1. This calculation resulted in correlation coefficients per108
participant, which represent the connectivity strength between the given ICNs. Then, the static connectivity109
matrices were averaged across the young and elderly adult groups.110

The difference in static connectivity between the young and elderly groups was evaluated through a111
two-sample t-test (a significance level of p < 0.05). The correction for multiple comparisons was applied112
using false discovery rate (FDR)-correction to determine statistical significance at p < 0.05 (Benjamini113
and Hochberg, 1995).114

2.5 Dynamic functional network connectivity analysis115

Figure 1 shows the framework of our DFNC approach. Specifically, there are five main steps in this116
pipeline:117

1. Group independent component analysis (ICA) parcellation for intrinsic connectivity network (ICN)118
recognition,119

2. Sliding window cross-correlation,120

3. Clustering analysis for brain state estimation,121

4. Dynamic feature extraction,122

5. FC dynamics examination via statistics and machine learning tests.123

Details of each step are provided in the following sections.124

2.5.1 Step 1: Group independent component analysis parcellation125

Group ICA was performed in order to parcellate the brain into various functional networks. Following126
the recommendations from previous studies (Allen et al., 2014; Xia et al., 2019; Abrol et al., 2017), the127
number of components that can functionally parcellate the brain was predefined at 100. The configuration128
for the group information-guided ICA algorithm was developed according to the detailed description129
provided by (Salman et al., 2019). In particular, we adopt the two-stage Principal Component Algorithm130
(PCA) to preserve the components that account for the most variance. In the first stage, each participants’131
functional data was decomposed into 120 principal components (PCs), and the PCs of all participants132
were concatenated across time and then further reduced to 100 in the second stage. Finally, the infomax133
algorithm, from the ICASSO software package (Himberg and Hyvarinen, 2003), was used with 20 repeats134
to find steady independent components (ICs). After back reconstruction, the participant-specific spatial135
maps and corresponding time courses can be obtained. Three methods were employed to detect the ICNs136
from potential functional networks:137

(1) The spatial activation maps from the ICs were visually inspected to identify if they match the large-138
scale functional network locations from previous studies (Kim et al., 2017; Di and Biswal, 2015) and139
anatomical brain regions.140
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Figure 1. The dynamic functional connectivity analysis pipeline. The timeseries signal was extracted from
the network regions recognized from the group ICA parcellation method. Then, the regional timeseries
were decomposed with a sliding window scheme for a time-varying function network connectivity(FNC)
estimation. Those FNC matrixes were fed into a clustering algorithm to obtain different transient brain
states by forming a cluster centroid. After that, two types of dynamic features were calculated based on
the acquired transient states and temporal signals. Finally, statistical and machine learning methods were
applied to verify the extracted dynamic FC features.

(2) The multiple regression method was used to select ICs whose spatial pattern matches with the existing141
functional networks template given by:142

Y = β1X1 + β2X2 + · · ·+ βnXn + ε, (1)

where Y is the collection of the spatial vector of template ICNs, Xi represents the spatial vector of the143
i-th IC and β is the regression coefficient. The regression analysis is used to select the ICs closest to the144
functional network template spatially (the first rank of β), and the calculation is done by least-squares145
estimation.146

(3) The power spectrum of the ICs was checked to see if it follows a low-frequency peak and a high-147
frequency steady pattern (the time courses of ICs are characterized by high dynamic range) (Griffanti148
et al., 2017).149

Following the practice presented in (Bonkhoff et al., 2020; Tu et al., 2019), before passing the ICNs to the150
subsequent steps of the DFNC pipeline, additional post-processing of the time courses of all included ICNs151
was performed. The post-processing involved (a) linear, quadratic, and cubic detrending, (b) regressing out152
motion parameters (six realignment parameters and their first temporal derivatives), (c) low-pass filtering153
with a high-frequency cut-off of 0.15 Hz (to retain only BOLD-related signal fluctuations (Calhoun et al.,154
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2001)), and (d) despiking using 3D despike. These actions ensure artifact noise has minimal impact on the155
signal analysis.156

2.5.2 Step 2: Sliding window cross-correlation scheme157

In the second step a sliding window is used to segment the timeseries of the ICNs into sub-fragments.158
For each time window the correlations between the ICNs during that window were calculated. There159
is no consensus in terms of the window size and the length of the sliding step. However, prior studies160
provide evidence that a window size between 30s and 60s enables successful estimation of DFNC giving an161
appropriate balance between accurate calculation of the correlation and the ability to detect time variations162
in the ICN timeseries (Liégeois et al., 2016; Preti et al., 2017; Hindriks et al., 2016). Thus, in our experiment,163
we opted for the common parameter settings, where the width of the window is 22 TR time (Kim et al.,164
2017; Bonkhoff et al., 2020), windows were convolved with a Gaussian of σ = 3 TR to smooth the transition165
between windows (Allen et al., 2014), and the window shifted with a step of 1 TR (Bonkhoff et al., 2020; Tu166
et al., 2019). The window cross-correlation produced 273 correlation matrices, representing the fluctuation167
of functional connectivity between the identified ICNs. These matrices are Fisher’s Z transformed before168
being passed to step 3 for clustering analysis.169

2.5.3 Step 3: Clustering analysis for brain state estimation170

Recurrent or repeating connectivity patterns in an fMRI scan are known as dynamic brain states. To171
identify these brain states clustering is performed using the k-means based clustering algorithm. The172
distance between clustering points was computed using the Manhattan distance (i.e., the “city-block”),173
which is the distance metric recommended for high-dimensional-space clustering (Aggarwal et al., 2001).174
The number of clusters is automatically computed by maximizing the ratio of within-cluster distance175
and between-cluster distance, and the optimal candidate is then manually estimated using the elbow176
method (Allen et al., 2014; Bonkhoff et al., 2020). For each subject the correlation matrices from step 2177
were grouped into different clusters according to the distance from the clustering centroid. This results in178
state labels for each of the time windows which are used in the dynamic feature calculations in the next179
step in order to investigate the difference between the young and elderly adult groups.180

2.5.4 Step 4: Dynamic feature extraction181

Next, the FC temporal characteristic evaluation as well as the dynamic graph analysis were performed.182
Following (Allen et al., 2014; Bonkhoff et al., 2020), using the state labels, four FC temporal characteristics183
were calculated as features for the between-group difference: (i) state fraction: the percentage of the total184
number of FC windows for one subject which take the given state; (ii) mean dwell times: the mean time185
a subject spent in a state without switching to another one; (iii) number of transitions: how many times186
a subject changed states; and (iv) transition probability matrix: the transition likelihood between the k187
connectivity states.188

The rationale behind the dynamic graph analysis is that, with the FC potentially fluctuating with each189
time window, so too the topological structure of the graph can vary. For the dynamic graph analysis, as190
shown in step 4 in Figure 1, the ICNs were defined as the nodes in the graph and the FC between them as191
the edges, thus for each participant a graph is obtained for each time window. To define the adjacency of the192
nodes a threshold can be applied to the edges in the graph to produce an undirected and binary adjacency193
matrix. However, as the topological structure is not constant within one graph if using different network194
thresholds, the network sparsity method has been adopted in our experiment to avoid the bias of unstable195
measures in between-group dynamic feature comparison (Kim et al., 2017; Xia et al., 2019; Zhang et al.,196
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2011; Rashid et al., 2021). Similar to prior studies (Hashmi et al., 2017; Tu et al., 2019; van den Heuvel197
et al., 2017), 10 thresholds ranging from 0.05 to 0.50 with a step of 0.05 were used to obtain the sparse198
network. Each threshold produced an adjacency matrix for each DFNC matrix.199

Having obtained the adjacency matrices then, graph theory was applied to investigate the topological200
organization of the DFNC state and the series of graphs. Specifically, we use 12 graph metrics to measure201
the graph characteristics and dynamics during the fMRI scan. For example, network efficiency, measures202
how efficiently a node exchanges information or communicates with other nodes within a network. The203
other selected metrics include assortativity, global and local efficiency, and synchronisation, which depict204
a brain function network’s resilience, segregation, and integration. Detailed definitions of these graph205
metrics and their formulas are listed in Table 1 in the Supplemental Materials: Appendix 1. To balance the206
sparsity selection for the sequence of thresholds, the area under the curve (AUC) for the metric values was207
computed. Then, the AUC was utilised as a graph feature for further analysis.208

2.5.5 Step 5: Statistics and machine learning tests209

The final step in the pipeline conducts statistical testing to examine the results. To obtain robust and210
reliable results on ageing-related variations within and between groups, a non-parametric permutation test211
with 5000 randomizations was implemented for all of the dynamic features produced in the DFNC analysis212
pipeline. The difference in the means of the distributions yielded after the 5000 random permutations213
served as the t statistic. In addition, we investigated the presence of the distinct transient brain states214
across different age groups by performing a two-sample t-test. All statistical results were corrected by false215
discovery rate (FDR) for multiple comparison correction with a significance level of p < 0.05.216

Meanwhile, nine machine learning algorithms were implemented to examine the power of the dynamic217
features to predict the age of an individual. These algorithms were exploited to learn a mapping from the218
raw fMRI space, X , to the age distribution of participants, Y . That is: Φ : G (X ) → Y given the fMRI219

scan collection of training samples T =
{
(xn, yn)

}N
n=1

. Here, N is the number of training sample scans,220
xn ∈ X is the input scan and yn ∈ Y is the associated age label indicating if the participant is an elderly221
adult. G = {gi}Vi=1 is the function extracting dynamic FC features, and V is the number of features.222

These algorithms were all implemented using the sklearn python package. For the 6 methods listed in223
Table 1 the default setup with the given parameters was used. In addition, we developed a neural network224
method using Keras’s deep learning package. Considering our small sample data size could cause problems225
with over-fitting in the training phase for complicated network structures, a 2-layer forward neural network226
(FNN) was developed. The first and second layers of the neural network compose of 256 and 2 neurons227
(corresponding to the number of age categories.). At the end of the first and second layers, there is a tanh228
and sigmoid activation function to learn the non-linear mapping relationship. The model is trained by229
minimising the loss function:230

Lloss =
1

N

∑
i

− [yi · log (pi) + (1− yi) log (1− pi)], (2)

where pi is the predicted probability. Finally, we test two ensemble fusion-based methods: one is231
Adaboost (Hastie et al., 2009), and the other one is Voting (Ruta and Gabrys, 2005). Both algorithms try to232
promote prediction performance by weighting multiple embedded estimators. In the Adaboost method, the233
default setup was opted for. In the voting method, the ensemble rule was set to be “hard”, which means that234
the predicted class labels for majority voting will be the final prediction results.235
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Table 1. Machine learning algorithms and their parameters.

Algorithm Parameters

Nearest Neighbors number of neighbors = 2
Linear SVM regularisation parameter = 0.025
RBF SVM same as Linear SVM
Gaussian Process default
Decision Tree depth = 5
Random Forest number of neighbors = 5, number of estimators = 10

The dynamic feature output by gi was singly fed into these machine learning methods to examine whether236
the ageing group classification facilitates dynamic classification. In addition, we have also cascaded the237
outputs of G (X ) together to examine if the concatenated dynamic feature can promote the performance.238

3 RESULTS

3.1 Intrinsic connectivity networks239

Of the 100 ICs identified by the group ICA, 40 ICs were identified as noise components and then240
discarded. The remaining 60 components were finally identified as ICNs. The 60 ICNs were assigned to241
one of six domains that have been widely studied in normal ageing (Snyder et al., 2021; Xia et al., 2019)242
(Figure 2): subcortical domain (SC), auditory domain (AUD), visual domain (VIS), sensorimotor domain243
(SM), cognitive control domain (CC), and default mode domain (DMN). The detailed component labels244
and peak coordinates of each ICN have been provided in the Supplementary Material:Appendix 2.245

3.2 Static functional network connectivity analysis246

Figure 3 shows the static functional network connectivity aggregated over the entire scanning time series247
using the group ICA method. The red colour indicates a positive correlation, and the blue colour represents248
a negative correlation between functional spatial regions. With the static functional network connectivity,249
we observed strong intra-domain connectivity, i.e., connectivity within the DMN, SMN, VIS, and AUD250
domains was positively correlated. In contrast, the inter-domain connectivity was comparably low, where251
the functional regions in the 6 domains were either independent of each other or negatively connected. This252
phenomenon was particularly obvious for the SC domain, where the connectivity with the other 5 domains253
was nearly all negative. Within the SC domain, the brain areas also exhibit negative connectivity.254

Further reviewing the difference in connectivity from the elderly group and the younger using a two-255
sample t-test, 193 connectivity pairs show significantly altered between-network connectivity components.256
The significant alterations in ICNs have been denoted with an asterisk in Figure 3(A), from which we257
can see that these alterations are mainly related to the CC domain. Post t-tests, contrasting elderly adults258
and younger controls, reveals ageing-induced reduced connectivity (p < 0.05, FDR-corrected). From259
Figure 3(B), we can see only the connectivity between SM and CC domains was left after post t-tests in260
group ICA (p < 0.05, FDR-corrected). This result shows consistency with the studies that show higher261
connectivity between the somatosensory and control network (Geerligs et al., 2015).262
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Figure 2. Spatial maps of the 60 independent components result from the entire group (28 elderly and 34
younger adults). The coordinates denote the max peak location of functional domains, and different colors
pass spatial information. AUD = auditory domain; CC = cognitive control domain; DMN = default mode
domain; SC = subcortical; SM = sensorimotor domain; VIS = visual domain.

(A) (B)

Figure 3. (A) Static functional network connectivity between 60 independent components resulting in
1770 ( 60× (60-1)/2 )connectivity pairs for the entire group. Asterisks indicate significant differences
between the elderly and younger groups. (B) Circle plot of significant static functional network connectivity
differences of 6 domain between the elderly adult and younger group.
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3.3 Dynamic functional network connectivity analysis263

3.3.1 DFNC State264

Four DFNC states were identified from the clustering. The identified states were the functional patterns265
that frequently reoccurred across all the participants, and are stable characterisations of the brain activity266
during the fMRI scanning. The four states are presented in Figure 4(A) indexed with the order given by267
k-means.268

Figure 4. (A) 4 functional connectivity states as well as their frequencies across all participants using the
group-ICA method. (B) Group differences of the 6 selected brain networks between elderly and younger
adults in the 4 states. AUD = auditory domain; CC = cognitive control domain; DM = default mode domain;
SC = subcortical; SM = sensorimotor domain; VIS = visual domain.

According to the connectivity pattern, the states can be grouped into two categories. State 1 and 4269
compose the first class, characterized by dense inter-and intra-domain connectivity. We can observe highly270
positive between-AUD domain connectivity and negative between-SC domain connectivity. State 1 closely271
matches the static connectivity in terms of Manhattan distance. The second category involves states 2 and272
3. Compared with the first, this class featured relatively weak and sparse connectivity, which is particularly273
obvious for the SC and AUD domains. Thus, we refer to the category as the weakly connected class. The274
state frequency of two connectivity types also supports this classification, in which the frequencies of two275
states in class 1 are no more than 20%, which is less than that of class 2 (which accounts for 70% in total276
for all subjects). Meanwhile, it is worth noting that the strong positive connectivity within VIS can be277
observed for all 4 states.278

Even though the DFNC states exhibit two categories, group differences for each state are varied (see279
Figure 4(B)). Within state 1, the elderly adults have slightly lower connectivity between VIS and CC while280
having relatively higher connectivity between VIS and the AUD domain (p < 0.05, FDR-corrected). In281
state 2, the connectivity between VIS and CC in the elder group shows a further decline. At the same time,282
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significantly increased connectivity between DMN and AUD and CC and AUD can be found in this state.283
The only significantly different intra-domain connectivity was observed in state 4. The result shows that284
within state 4, the elderly group has markedly stronger connectivity in the VIS domain than younger adults285
(post t-tests: p < 0.05, FDR-corrected). Similar to state 1, the weaker connectivity between VIS and AUD286
domains can also be observed in state 4. We did not find any significantly different connectivity in state 3287
between the two groups (post t-tests: p < 0.05, FDR-corrected). In contrast to the connectivity difference288
that the static connectivity state exhibits between the two groups, there is no significant difference between289
CC and SMN after the FDR-corrected in all 4 states.290

3.3.2 DFNC temporal features291

With four dynamic functional connectivity states and window-based FNC matrices, we subsequently292
tested for between-group differences in the measures of dynamic features (see Figure 5). Two sample t-tests293
comparing younger and elderly adults revealed a significant difference in the dynamic measures (fraction294
and dwell time) of state 2 as well as state 3 (i.e., the weak connectivity pattern, p < 0.05, FDR-corrected).295
In contrast to younger adults, the elderly prefer states 2 and 3 (p = 0.0001), and they are more likely to296
stay in states 2 and 3 once they enter these states (p = 0.0001). The between-group difference in dwell297
time of state 3 is more prominent(p < 0.0001). No significant between-group difference was observed in298
terms of the number of state transitions.299

With respect to the transition probability matrix between states, there were significant between-group300
effects on the likelihood of staying in one state stably or switch to another. Consistent with the finding that301
the elderly prefer to spend more time on state 3, results showed that the elderly are more inclined than302
younger people to switch to state 3 when the current state is not state 3. This is particularly true when the303
current state is state 2 (p = 0.0001, FDR-corrected), demonstrating why the elderly prefer state 2 but have304
less dwell time than state 3. However, when entering State 3, older people are less likely to remain in this305
state than younger ones. More elderly people prefer to switch to state 1 or state 2, while younger people306
tend to maintain a stable state (p < 0.05, FDR-corrected). When the next state is state 4, the transition307
probabilities of elderly and younger people do not differ.308

To better utilise the dynamic connectivity features to serve ageing classification, we next explored the309
correlation between these features and the age of participants. The dynamic connectivity features correlated310
with age have been listed in Table 2. As can be seen, the fraction time and dwell time of state 2 are311
negatively correlated with age (fraction time: r = −0.639, p = 0.000; dwell time: r = −0.502, p = 0.000).312
In contrast, the fraction time and dwell time of state 3 are positively correlated with age (fraction time:313
r = 0.651, p = 0.000; dwell time: r = 0.555, p = 0.000). In terms of transition probability between states,314
the likelihood of state 1 switching to state 3, of state 3 switching to state 1, as well as state 3 switching315
to state 2 all have a positive correlation with age (r = 0.316, 0.265, 0.254, p = 0.012, 0.038, 0.046,316
respectively), while the probability of switching from state 3 to state 3 is negatively correlated with age317
(r = −0.409, p < 0.001).318

3.3.3 Dynamic graph analysis319

To explore the age effect on the functional network topology, the subsequent work employed graph320
theory to characterise the dynamic graph changing during fMRI scanning. Various graph metrics have been321
utilised, which can describe multiple network properties. These graph measures were calculated based on322
the sparsing-threshold binary networks per participant and then averaged within the group. Subsequently,323
they were tested for between-group differences in terms of graph dynamics.324
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Figure 5. Dynamic connectivity feature analysis for the elderly and younger groups. (A) The fraction of
time the occurrence of DFC state 2 and state 3 has significant between group difference. The elder prefer
state 2 (P < 0.05) and state 3(P < 0.05). (B). The dwell time. Once again, the senior group is more like
to stay within state 2 and state 3. (C). The number of transition between states. There is no significant
difference in the number of state transition between two groups. (D). State Transition Probability matrix.
Comparing with younger adults, the older people more inclined to switch to state 3 when they are in state
1, 2 or 4. However, they are also more likely to transfer to other state when they are entering state 3 than
younger people.

Table 2. Dynamic state features correlated with age.

Dynamic Connectivity Features r p

Fraction time of State 2 -0.639 0.000
Fraction time of State 3 0.651 0.000
Dwell time of state 2 -0.502 0.000
Dwell time of state 3 0.555 0.000
Transition probability from state 1 to state 3 0.316 0.012
Transition probability from state 3 to state 1 0.265 0.038
Transition probability from state 3 to state 2 0.254 0.046
Transition probability from state 3 to state 3 -0.409 0.001

Firstly, we observed a significant between-group difference in global efficiency (t = 6.5046, p < 0.0001),325
local efficiency (t = −11.4388, p < 0.0001), synchronization (t = 2.2756, p = 0.0232), hierarchy326
(t = 12.384, p < 0.0001), modularity (t = 16.1638, p < 0.0001), the shortest path (t = −11.4388,327
p < 0.0001), clustering coefficient (t = −4.1766, p < 0.0001) and the betweenness (t = 10.8943,328
p < 0.0001). Figure 6 displays the time course of these graph metrics. In terms of efficiency, we can see329
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Table 3. The correlation between nodal graph measures and age.

Domain

r(p<0.05) Metric Local
Efficiency Vulnerable Nodal

Betwenness

DMN -0.263 -0.433 -0.496
SMN 0.159 0.2121 0.364
VIS -0.298 -0.117 0.237
CC 0.048 0.004 0.087
SC 0.252 0.137 -0.093

AUD 0.111 0.049 0.163

that the elderly group has a higher global but lower local efficiency than the younger group, suggesting that330
the information transfer is more efficient in the global but less efficient in the local functional network as331
age grows. Across these dynamic measures, the elderly people only have three measurements significantly332
higher than the younger group: the synchronisation coefficient, hierarchy coefficient, and modularity.333
These higher measures indicate that as the age increases, the synchronisation ability of the functional334
region in the brain network increases. The raised age increases modularity and enriches the hierarchy335
structure. Note that the significantly higher value in elderly people is not overwhelming. At some transient336
time points, these younger people have a stronger performance in these measures. Examples include the337
weaker synchronisation in the younger group at TR=150, which is consistent with the observed lower338
synchronisation in transient dynamic state 2 for older adults. A significant difference can also be observed339
in the clustering coefficient and the shortest path, which directly results in the distinguishing small-world340
property of the two groups. The lower small-world property implies that the elderly group is less robust to341
external perturbations, according to the hypothesis by (Barabási, 2013). In that case, it fits our biological342
intuition that older people are subject to damage by mutation or viral infection. However, there may be a343
lack of direct evidence to demonstrate a linear relationship.344

Secondly, there are three other nodal graph measures explored in our work: local efficiency, vulnerable345
coefficient, and betweenness, which characterise the information-transferring efficiency of a specific346
node, the vulnerability of a node, and the importance of the node’s role in the network, respectively. Six347
sub-networks were observed to have significant differences between the two groups on the three measures.348
For the DMN network, people 60 to 80 years old have significantly lower local efficiency(t = −16.8892,349
p < 0.0001) and vulnerable coefficient (t = −31.5046, p < 0.0001) than younger people, suggesting350
the DMN has less efficient information transfer and a higher risk of slowing global efficiency. The same351
situation occurs in the VIS network (t = −19.9135 and -7.0166 for the two metrics, respectively). The352
DMN network efficiency decline can also be supported by the significantly decreased nodal betweenness (t353
= -31.8963, p < 0.0001), where the higher the nodal betweenness coefficient, the more likely information354
will transfer through the node. Figure 7 shows the time-varying curve of these three measures in DMN355
during the fMRI scan. We can see that older people’s metric curves do not have an apparent trend, but they356
are always lower than younger people’s. Besides, the correlation between the nodal graph measures and the357
age for the six domains also behaved differently (see Table 3). The DMN’s local efficiency, vulnerable358
coefficient, and nodal betweenness have some of the highest negative correlation values compared to the359
other five networks. On the other hand, the CC domain has the smallest correlation in all three measures360
compared to other parts.361
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Figure 6. Time course of multiple dynamic measures for the different age groups.

Figure 7. Time varying curve of the three dynamic measures of DMN network: local efficiency, vulnerable,
nodal betwenness in age-different group, where no matter which metric elder people are lowest.

3.4 Machine learning test for individual age prediction362

Given that the dynamic features are significantly different between the two groups, it is natural to test363
their power in individual age prediction using a machine learning algorithm.364

Firstly, the single dynamic state feature (the fraction, MDT, etc.) was fed into the nine machine learning365
algorithms respectively to test their prediction power, with the static functional connectivity strength serving366
as baseline for comparison. The performance of each pipeline was evaluated with 5-fold cross-validation,367
and the result of the test set is summarized in Table 4. The evaluation metric is accuracy, i.e., the probability368
that the method correctly categorizes the candidates into the correct class. We report the mean of 5-fold369
cross-validation results in each metric with a 95% confidence interval.370

As can be seen, by using the state fraction feature, all the machine learning algorithms have an accuracy371
over 80%, which is higher than any other feature (except the AdaBoost method with concatenated372
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Table 4. The prediction accuracy of multiple machine learning algorithms with dynamic state features.
The bold values represent the algorithm that achieves the best performance using the feature indicated in
the column. The italic values denote the highest accuracy that the machine learning algorithm could obtain
across all the input dynamic features.

Dynamic State Feature

Algorithm Baseline Fraction MDT NumofTrans. Transition
Probability Concatenated

Nearest Neighbors 0.551(0.124) 0.852 (0.117) 0.636 (0.251) 0.690 (0.160) 0.648 (0.135) 0.795 (0.200)
Linear SVM 0.531 (0.112) 0.852 (0.117) 0.612 (0.152) 0.640 (0.107 ) 0.648 (0.112) 0.840 (0.124)
RBF SVM 0.531 (0.112) 0.852 (0.117) 0.617 (0.207) 0.607 (0.119 ) 0.631 (0.141) 0.740 (0.186)
Gaussian Process 0.483 (0.106) 0.838 (0.124) 0.536 (0.170) 0.690 (0.141) 0.683 (0.1770) 0.729 (0.158)
Decision Tree 0.585 (0.132) 0.886 (0.129) 0.583 (0.165) 0.729 (0.175) 0.648 (0.211) 0.840 (0.144)
Random Forest 0.585 (0.153) 0.855 (0.116) 0.650 (0.225) 0.755(0.157) 0.695 (0.175) 0.852 (0.157)
FNN 0.552 (0.173) 0.838 (0.124) 0.579 (0.155) 0.560 (0.118) 0.564 (0.104) 0.807 (0.161)
AdaBoost 0.577 (0.111) 0.807 (0.142) 0.617 (0.193) 0.771 (0.150) 0.731 (0.195) 0.855 (0.138)
Voting 0.511 (0.131) 0.852 (0.117) 0.617 (0.193) 0.624 (0.156) 0.679 (0.143) 0.840 (0.163)

feature). The decision tree achieves the highest accuracy of 0.886 using this feature, which is also the best373
performance in all of the dynamic state features. The highest accuracy for the number of transitions and374
transition probability is similar, 0.771 and 0.731, respectively. Meanwhile, the best performance of the375
number of transitions is more stable than that of transition probability, where the accuracy variance is376
less by 0.04. However, the number of transitions has a large gap in performance in terms of the different377
methods, where it can only achieve an accuracy of 0.560 with the FNN algorithm. The MDT has the lowest378
accuracy of 0.650. Concerning the concatenated feature, even though the results are not much worse than379
those for the number of transitions and transition probability, the highest accuracy is only 0.855, which is380
still less than the state fraction. On the other hand, with respect to the classic methods, the FNN method is381
the most unstable one. It obtains a mean accuracy of 0.855 using fractions while it has a 0.560 when using382
the transition probability as input. For the two ensemble-fusion-strategy-based methods, the voting method383
did not perform well for individual age prediction, though its best result is still for the fraction feature. In384
contrast, the AdaBoost method has achieved the best performance three times, the most frequent optimal385
method.386

Second, similar to the dynamic state features, the dynamic graph features were also input into different387
machine learning algorithms. However, the results were not impressive using the single graph features (see388
Table 5 and Table 6). All of the features do not achieve accuracy over 70%, the best accuracy was just389
0.693 obtained by the SVM with the number of modularity.390

4 DISCUSSION

Given the known dynamic nature of brain activity, it is reasonable to use the DFNC method to investigate391
the differences in dynamics between age groups. In the study presented here, four transient brain states that392
frequently reoccur at rest were identified. These 4 states exhibit two types of connectivity patterns: the393
densely inter-and intra-domain connectivity pattern and the weakly sparse one. The elderly tend to transfer394
to and stay in the weakly connected state, which cannot be shown with static analysis. Notably, the fraction395
of these DFNC states and the dwell time were correlated with age (r = 0.6392/0.6507 for time fraction of396
state 2 and 3 respectively; r = 0.5022/0.5553 for the dwell time of state 2 and 3 respectively). Besides,397
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Table 5. The prediction accuracy of multiple machine learning algorithms with dynamic graph features (I).
The bold values represent the algorithm that achieves the best performance using the feature indicated in
the column. The italic values denote the highest accuracy that the machine learning algorithm could obtain
across all the input dynamic graph features.

Dynamic Graph Feature

Algorithm Baseline Global
Efficiency

Local
Efficiency Synchronization Hierarchy ModularityQ

Nearest Neighbors 0.551 (0.124) 0.5262 (0.208) 0.505 (0.165) 0.481 (0.209) 0.571 (0.183) 0.533 (0.129)
Linear SVM 0.531 (0.112) 0.555 (0.195) 0.517 (0.142) 0.502 (0.166) 0.506 (0.231) 0.564 (0.220)
RBF SVM 0.531 (0.112) 0.548 (0.066) 0.548 (0.656) 0.548 (0.066) 0.548 (0.066) 0.548 (0.066)
Gaussian Process 0.483 (0.106) 0.471 (0.271) 0.531 (0.154) 0.469 (0.217) 0.607 (0.141) 0.617 (0.111)
Decision Tree 0.585 (0.132) 0.340 (0.155) 0.567 (0.188) 0.407(0.172) 0.576 (0.172) 0.483 (0.168)
Random Forest 0.585 (0.153) 0.483(0.121) 0.502 (0.157) 0.457 (0.150) 0.579 (0.172) 0.500 (0.226)
FNN 0.552 (0.173) 0.436 (0.161) 0.533 (0.129) 0.467 (0.211) 0.648 (0.247) 0.483 (0.259)
AdaBoost 0.577 (0.111) 0.505 (0.188) 0.369 (0.228) 0.390 (0.186) 0.569 (0.302) 0.519 (0.209)
Voting 0.511 (0.131) 0.676 (0.150) 0.533 (0.217) 0.536 (0.139) 0.500 (0.206) 0.357 (0.129)

Table 6. The prediction accuracy of multiple machine learning algorithms with dynamic state features (II).
The bold values represent the algorithm that achieves the best performance using the feature indicated in
the column. The italic values denote the highest accuracy that the machine learning algorithm could obtain
across all the input dynamic graph features.

Dynamic Graph Feature
Algorithm NumModularity ClusteringCOff ShorestPath Betwenness Concatenated

Nearest Neighbors 0.562 (0.200) 0.450 (0.171) 0.531 (0.186) 0.529 (0.194) 0.437 (0.049)
Linear SVM 0.693 (0.133) 0.486 (0.164) 0.564 (0.165) 0.500 (0.032) 0.515 (0.074)
RBF SVM 0.548 (0.066) 0.548 (0.066) 0.548 (0.066) 0.548 (0.066) 0.548 (0.019)
Gaussian Process 0.598 (0.123) 0.448 (0.122) 0.500 (0.152) 0.598 (0.105) 0.548 (0.019)
Decision Tree 0.579 (0.201) 0.436 (0.143) 0.419 (0.182) 0.567 (0.115) 0.610 (0.153)
Random Forest 0.517 (0.168) 0.581 (0.162) 0.467 (0.189) 0.579 (0.155) 0.421 (0.197)
FNN 0.662 (0.082) 0.367 (0.149) 0.514 (0.198) 0.550 (0.143) 0.533 (0.012)
AdaBoost 0.650 (0.121) 0.310 (0.141) 0.507 (0.152) 0.581 (0.207) 0.579 (0.068)
Voting 0.511 (0.222) 0.474 (0.208) 0.529 (0.099) 0.593 (0.188) 0.529 (0.099)

these dynamic measures gain advantage in brain age classification compare to static ones. The fraction398
time of DFNC state can achieve highest accuracy of 0.8857 using a decision tree.399

There is a significant difference in the dynamic graph topology found between the young group and400
the elderly group. Older people have higher global but lower local information transformation efficiency,401
stronger synchronization ability, increased betweenness, more rich modularity and hierarchy structure,402
shorter shortest path length, and a declining clustering coefficient than younger people. At the nodal403
level, elderly adults differed from younger people in terms of local efficiency, vulnerable coefficient,404
and betweenness. The most notable of these differences is that the information transfer efficiency, the405
vulnerability, and the nodal betweenness of older people’s DMN are all less than those of the younger group406
during the rest period. Thus, we here substantiated the lower role of DMN in elderly people, indicating407
dynamic analysis’s benefit.408
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4.1 The correlation between dynamic features and mnemonic discrimination ability409

Mnemonic discrimination ability (MDA) is the perception ability of humans to distinguish existing410
memories from current inputs by retrieving and encoding past events or experiences. Studies have shown411
that the decrease in MDA is a sign of neurodegenerative diseases relative to ageing. Many pieces of evidence412
show that as age increases, the MDA will significantly decline (Stark et al., 2019, 2013) (Wahlheim et al.,413
2022). However, whether the relationship is linear or not is not clear.414

MDA is usually measured by the lure discrimination index (LDI), calculated as the difference in similar415
responses to lures and foils in the mnemonic discrimination task (Stark et al., 2019). Previous studies have416
demonstrated the DMN network has an age-inducted abnormal connectivity (Nash et al., 2021; Raichle,417
2015), and this connectivity abnormality can develop a positive prediction model for LDI (Wahlheim et al.,418
2022). Nevertheless, this prediction is based on the static connectivity strength, the dynamic characteristics419
of DMN, or broadly, the function sub-networks, have not been thoroughly investigated. Hence, with the420
LDI provided by the original data source, this section additionally investigates the correlation between age,421
the dynamic feature, and MDA.422

Firstly, age was observed to be negatively correlated with LDI (r = −0.3890, p = 0.001), which is423
consistent with the previous findings (Reagh et al., 2016). In terms of dynamic state features, the fraction424
time of state 2 is positively correlated with LDI (r = 0.3270, p = 0.0094), and the fraction time of state425
3 is negatively correlated with LDI(r = −0.3882, p = 0.0018). Similar to fraction time, the MDT of426
states 2 and 3 has a significant correlation with LDI, where the correlation is r = 0.3145 (p = 0.0127)427
and r = −0.3591 (p = 0.0041) respectively. There is no significant correlation between the number of428
transitions and LDI or between transition probability and LDI. Recall that the connectivity pattern of429
state 3 is both weakly connected. This finding implies that the transient weakly connected state impacts430
the ability of everyday people to distinguish objects. We speculate the aging brain regulates the fraction431
of the weak state and its dwell time to determine the perceptive ability. In the weak state, the ability of432
different brain regions to communicate and coordinate with one another is reduced. As age increases, the433
brain cannot afford the active connectivity state and prefer a ”standby” or ”sleep” mode, thus lowering the434
perceptive function. In addition, cognitive and perceptual changes may be interrelated since they are both435
susceptible to age-related factors, meaning that a reduction in the functioning of the perceptual system436
may have an impact on cognitive abilities. Hence, it is possible to speculate that the common finding437
of cognitive decline in the aging brain could be closely related to the weak state of the brain. However,438
further experiments are necessary to confirm these speculations and explore the relationship between DFNC439
differences and health and cognitive function during aging. In addition, compared with state 3, state 2 has440
obvious positive connectivity within the DMN network, especially between the right angular gyrus and the441
anterior cingulum, suggesting that the transient state with positive connectivity in the DMN domain may442
promote the increase of MDA. In fact, previous studies have reported that connections positively related to443
mnemonic discrimination are broadly distributed across prefrontal, temporal, and parietal regions (Huijbers444
et al., 2011; Kim, 2016; Sestieri et al., 2011). Thus, we subsequently investigate the correlation between the445
nodal-level graph measure of DMN and LDI to hopefully extend our understanding of the DMN network’s446
role in MDA.447

The results show that only the node betweenness of DMN was observed with a weakly positive correlation448
(r = 0.2644, p = 0.03780) among the three nodal graph measures. According to the definition of nodal449
betweenness, this finding implies that the more information transfer passes through the DMN functional450
region, the more MDA. Besides, recall the highly negative relationship between DMN nodal betweenness451
and age. One possible and reasonable reason for the older adults’ MDA being significantly lower than452
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younger ones is that the ageing process mitigates DMN participation gradually, thus inducing the decrease453
in the MDA. However, it may involve a complicated process. To substantiate this implication, more detailed454
experiments that target the brain DMN function domain are needed.455

4.2 Dynamic balance of functional integration and segregation in healthy ageing456

The brain system keeps normal functions by maintaining the balance of functional integration (of457
different functional regions’ information transmission for function response) and segregation (specialized458
information processing within the isolated functional regions). In many diseases with psychiatric disorders459
like schizophrenia, the disrupted balance between segregation and integration within the brain functional460
network has been demonstrated (Duan et al., 2019; Wang et al., 2016). Previous studies in human ageing461
also revealed the abnormal integration and segregation within the brain function system: the decreased462
segregation occurs in the healthy ageing process (Chan et al., 2014; Wig, 2017). Usually, the balance463
between integration and segregation can be quantified with small-worldness, a graph measure based on464
the trade-off between high local clustering and short path length (Humphries and Gurney, 2008). This465
network-level metric measures a graph with many local connections and a few random distance connections.466
Below, we calculate the dynamic small-worldness to investigate the time-varying balance of integration467
and segregation.468

Firstly, the 2-way ANVOA result shows that age has no significant effects on the small-worldness469
measure (F = 2.18, p = 0.14), even though this measure is different between transient states. It suggests470
that the small-world network has not functionally changed as one ages. From the time-varying curve of471
small-worldness across the entire rest period, we can see that the small-worldness of both young people472
and the elderly has no clear boundaries. Most of the time, two curves are interwoven together. No one is473
always higher or lower than another. Besides, the two small-worldness curves are not smooth during the474
entire rest period. They have large fluctuations, with many spikes. What the spikes mean for the people’s475
behaviors or if their characteristics, like the number of spikes and the energy, cause the age difference has476
not been clear. However, the measured value always fluctuates around 1 as time goes by, which means that477
both younger and older people keep a dynamic balance of functional integration and segregation.478

Subsequently, from other graph metrics, we may have some clues to the changed functional integration479
and segregation in elderly people. As a spatially isolated functional specialization, segregation has multiple480
ways to be quantified. For example, previous studies have quantified segregation with the relationship481
connectivity strength within and between the modules (Bonkhoff et al., 2020; Chan et al., 2014; Wig,482
2017). Hence, segregation is often connected with brain modularity. The higher the value of modularity, the483
more segregation in functional domains. Recall the modularity measure curves in Figure 6. The elderly’s484
modularity is nearly always lower than the young, which perhaps implies more functional segregation485
in senior group people. However, a prior study in a long-term observation has demonstrated that the486
modularity and segregation might follow a U-shaped curve (Duncan and Small, 2016). Thus, the simple487
linear relationship between modularity and segregation in terms of age may not be true, and more evidence488
is needed to support that.489

5 CONCLUSION

Ageing has a profound influence on brain functional connectivity. This paper employed the DFNC method490
to explore the altered dynamic brain function interaction using the resting fMRI scans. Compared with491
static approach, the DNFC can capture the transient brain state in the elderly as well as young adults. The492
statistical analysis shows that the state-related features are significantly different between senior adults aged493
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60 to 80 and younger adults aged 18 to 30. In addition, DFNC exhibits the graph topology change spanning494
the entire scan, suggesting that growing age will induce an alteration in the information transformation495
efficiency, the robustness of the brain function network, and the dynamic balance of brain integration and496
segregation. Furthermore, this paper demonstrates that the time fraction of a transient stage could assist in497
brain age prediction due to the essential clues it carries (with the highest accuracy of 0.88). Overall, using498
a DFNC approach allows new insights into the systems-level effects that brain ageing has on dynamic499
neural interaction, highlighting that the human brain tends to form differential function coupling patterns500
with ageing. In future work, this function pattern alteration would be promising to help us interpret the501
relationship between aging and elderly-related diseases such as Alzheimer’s disease or stroke.502
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