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ABSTRACT2

Functional magnetic resonance imaging (fMRI) has shown that ageing disturbs healthy brain3
organization and functional connectivity. However, how this age-induced alteration impacts4
dynamic brain function interaction has not yet been fully investigated. Dynamic function network5
connectivity (DFNC) analysis can produce a brain representation based on the time-varying6
network connectivity changes, which can be further used to study the brain ageing mechanism7
for people at different age stages. Hence, this presented investigation examined the dynamic8
functional connectivity representation and its relationship with brain age for people at an elderly9
stage as well as in early adulthood. Specifically, the resting-state fMRI data from the University10
of North Carolina cohort of 34 young adults and 28 elderly participants were fed into a DFNC11
analysis pipeline. This DFNC pipeline forms an integrated dynamic functional connectivity (FC)12
analysis framework, which consists of brain functional network parcellation, dynamic FC feature13
extraction, and FC dynamics examination. The statistical analysis demonstrates that extensive14
dynamic connection changes in the elderly concerning the transient brain state and the method15
of functional interaction in the brain. In addition, various machine learning algorithms have been16
developed to verify the ability of dynamic FC features to distinguish the age stage. Results17
show that the fraction time of DFNC states has the highest performance, which can achieve a18
classification accuracy of over 88% by a decision tree. Furthermore, the dynamic FC alteration19
has been found to be correlated with mnemonic discrimination ability and could have an impact20
on the balance of functional integration and segregation.21
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1 INTRODUCTION

Ageing has a profound influence on the brain’s structure and function at both local and global scales. These24
effects are responsible for decreased mental and physical fitness (Cole et al., 2018) and increased risk of25
neurodegenerative diseases such as Alzheimer’s disease (Abbott, 2011), or Parkinson’s disease (Reeve et al.,26
2014) (Dennis and Thompson, 2014). Functional magnetic resonance imaging (fMRI) is a powerful and27
efficient, accessible and non-invasive tool, which has been extensively used to reveal neural mechanisms28
engaged in the normal ageing process. It has also contributed greatly to elucidating the role that ageing29
plays in the decline of brain function (e.g., the cognitive (Uddin et al., 2017) or motor function (Thomason30
et al., 2008)). More precisely, resting-state fMRI studies have frequently reported altered connectivity both31
within-network and between-network. In human ageing the findings encountered include: the functional32
connectivity (FC) decreases within higher-order networks and segregation of networks diminishes with33
advancing age. For example, within the default network, the salience network, and the frontoparietal34
control network, FC has been reported to be reduced (Fjell et al., 2016; Grady et al., 2016). This FC35
alteration could be a sign of neural or functional network reorganisation, however, these findings rely36
on the static functional network connectivity analysis (SFNC). One potential limitation of SFNC is the37
theoretical assumption that the FC exhibits a constant state during a rest MRI period. This means that the38
fine-grained temporal evaluation of resting state has been neglected, and the flexibility of the functional39
network reorganisation cannot be assessed.40

Recently, with the advances in understanding of the temporal resolution of resting-state fMRI, the interest41
in how normal human ageing affects the time-varying or dynamic functional network connectivity (DFNC)42
has increased (Calhoun et al., 2014). For instance, the loss or decline of FC dynamics has been wildly43
found in the elderly adult group (Chen et al., 2017; Schaefer et al., 2014). This temporal variation of FC44
reflects the network flexibility necessary for brain function response, which fits our intuitive perception of45
the elderly who have the loss of physical flexibility. In contrast with SFNC, an advantage of DFNC is that46
it allows the fluctuation of FC, within or between the brain functional networks, over short periods to be47
observed. Identification of the FC fluctuation patterns allows the brain’s FC state profile to be identified.48
Following which, features characterizing the FC dynamics, such as the transition trajectories between49
distinct brain states (Allen et al., 2014; Vidaurre et al., 2021) can then be used to interpret brain behaviours.50

Given such a capacity, DFNC has been increasingly applied to brain ageing. For instance, the DFNC51
method has demonstrated that the FC dynamics degenerate in normal ageing. This degeneration is reflected52
by the lower switching rate between brain states within salience network (Snyder et al., 2021) and53
default network (Xia et al., 2019), as well as by the decreased connectivity flexibility in the right middle54
frontal gyrus (Yin et al., 2016). The FC dynamics has also been demonstrated to correlate with cognitive55
ability (Xia et al., 2019). Studies using DFNC methods have revealed other opinions regarding dynamic FC.56
For example, FC dynamics is usually characterized by the switching rate of connectivity states, which is57
defined as the rate at which a state transitions between potential functional brain states over a certain period.58
However, in a study investigating the human brain across the lifespan, for example, the switching rate of59
brain state was observed to have no difference between different age groups (Viviano et al., 2017). These60
distinct results are possibly due to differences in the implementation method and the data samples. While61
the results are not consistent, all these collected findings imply that the DFNC analysis is a promising62
method for providing insight into human ageing neuromechanisms from multiple views and means.63

Therefore, in this research, we explore the brains of two age-different groups with the DFNC method, to64
track the FC dynamics in the elderly over the MRI scan and to investigate the relationship between dynamic65
FC and age. Overall, we expect that the study of DFNC can reveal and track the change in flexibility of66
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function coordination and interaction in the elderly, and this alteration can facilitate brain age estimation at67

an individual level. This research also has the potential to form the basis for further investigations which68

may provide a deeper understanding of brain changes and ageing. This could offer clues to the relationship69

between brain maturity and brain behaviors as well as age-induced diseases.70

Speci�cally, the resting-state functional MRI data from 34 younger adults aged 19 to 22 and 28 elderly71

adults aged 60 to 80 have been tested by an implemented DFNC analysis pipeline. The fMRI data is used72

to identify the intrinsic connectivity networks (ICNs), from which the brain states are estimated and the73

dynamic features extracted. The alterations in FC dynamics caused by ageing were examined, and the74

power of dynamic features in individual age prediction was evaluated in this framework. In addition, we75

have also discussed the relationship between dynamic features and mnemonic discrimination ability and76

the dynamic balance of functional integration and segregation in healthy ageing.77

2 MATERIALS AND METHODS

2.1 fMRI acquisition78

Resting-state scans were obtained from the University of North Carolina samples at Greensboro1 after79

request, without any rights con�icts. The participants were 28 elderly adults (61–80 years old, mean age�80

standard: 69.82� 5.64; 20 female) and 34 young (18–32 years old, mean age� standard deviation(SD):81

22.21� 3.65; 20 female). Participants were instructed to lie motionlessly in the scanner and stay awake with82

their eyes open. All functional images were collected using a Siemens Trio 3.0T scanner with a 16-channel83

head coil and the following recording parameters: 32 slices with 4.0 mm thickness and no skip, time of84

echo = 30 ms; time of repetition (TR) = 2000 ms; �ip angle = 70, �eld of view = 220 mm, matrix size = 7485

× 74 × 32 voxels, 300 volumes in 10 minutes.86

2.2 fMRI data preprocessing87

The data for each participant has 300 measurements recorded over 10 minutes. The �rst �ve volumes of88

each scan were discarded to allow for magnetic stability and thus to generate a steady blood oxygenation89

level-dependent activity signal. The functional data was then processed with the following steps:90

1. Realignment to correct head motion (see Section 2.3 for veri�cation details).91

2. Slice time correction.92

3. Outlier identi�cation.93

4. Normalization (normalize to 3 mm MNI space using a templates from the SPM software94

package (Ashburner and Friston, 2005)).95

5. Spatial smoothing with a Gaussian kernel of 8 mm full-width at half-maximum (FWHM).96

The processing pipeline was executed using the CONN toolbox (Whit�eld-Gabrieli and Nieto-Castanon,97

2012).98

2.3 Veri�cation of head motion correction99

To verify there was no signi�cant head movement in the data, for each participant the individual mean100

and maximum framewise displacements (FD) (Power et al., 2012) were calculated. As the participants101

with large outlier scans have been removed from the raw data, none of the available participants had head102

1 https://openneuro.org/datasets/ds003871/versions/1.0.2
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motion greater than 0.5 mm. No signi�cant group difference in FD was observable when comparing the103

�nal sample of 28 old adults and 34 young adults (p = 0.92).104

2.4 Static functional network connectivity analysis105

To assess static connectivity, pairwise Pearson correlations were computed over the entire timeseries106

and then Fisher's Z-transformed. Group ICA-based was used to produce brain parcellations according to107

the same procedure as described in Section 2.5.1. This calculation resulted in correlation coef�cients per108

participant, which represent the connectivity strength between the given ICNs. Then, the static connectivity109

matrices were averaged across the young and elderly adult groups.110

The difference in static connectivity between the young and elderly groups was evaluated through a111

two-sample t-test (a signi�cance level ofp < 0:05). The correction for multiple comparisons was applied112

using false discovery rate (FDR)-correction to determine statistical signi�cance atp < 0:05(Benjamini113

and Hochberg, 1995).114

2.5 Dynamic functional network connectivity analysis115

Figure 1 shows the framework of our DFNC approach. Speci�cally, there are �ve main steps in this116

pipeline:117

1. Group independent component analysis (ICA) parcellation for intrinsic connectivity network (ICN)118

recognition,119

2. Sliding window cross-correlation,120

3. Clustering analysis for brain state estimation,121

4. Dynamic feature extraction,122

5. FC dynamics examination via statistics and machine learning tests.123

Details of each step are provided in the following sections.124

2.5.1 Step 1: Group independent component analysis parcellation125

Group ICA was performed in order to parcellate the brain into various functional networks. Following126

the recommendations from previous studies (Allen et al., 2014; Xia et al., 2019; Abrol et al., 2017), the127

number of components that can functionally parcellate the brain was prede�ned at 100. The con�guration128

for the group information-guided ICA algorithm was developed according to the detailed description129

provided by (Salman et al., 2019). In particular, we adopt the two-stage Principal Component Algorithm130

(PCA) to preserve the components that account for the most variance. In the �rst stage, each participants'131

functional data was decomposed into 120 principal components (PCs), and the PCs of all participants132

were concatenated across time and then further reduced to 100 in the second stage. Finally, the infomax133

algorithm, from the ICASSO software package (Himberg and Hyvarinen, 2003), was used with 20 repeats134

to �nd steady independent components (ICs). After back reconstruction, the participant-speci�c spatial135

maps and corresponding time courses can be obtained. Three methods were employed to detect the ICNs136

from potential functional networks:137

(1) The spatial activation maps from the ICs were visually inspected to identify if they match the large-138

scale functional network locations from previous studies (Kim et al., 2017; Di and Biswal, 2015) and139

anatomical brain regions.140
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Figure 1. The dynamic functional connectivity analysis pipeline. The timeseries signal was extracted from
the network regions recognized from the group ICA parcellation method. Then, the regional timeseries
were decomposed with a sliding window scheme for a time-varying function network connectivity(FNC)
estimation. Those FNC matrixes were fed into a clustering algorithm to obtain different transient brain
states by forming a cluster centroid. After that, two types of dynamic features were calculated based on
the acquired transient states and temporal signals. Finally, statistical and machine learning methods were
applied to verify the extracted dynamic FC features.

(2) The multiple regression method was used to select ICs whose spatial pattern matches with the existing141

functional networks template given by:142

Y = � 1X 1 + � 2X 2 + � � � + � nX n + "; (1)

whereY is the collection of the spatial vector of template ICNs,X i represents the spatial vector of the143

i -th IC and� is the regression coef�cient. The regression analysis is used to select the ICs closest to the144

functional network template spatially (the �rst rank of� ), and the calculation is done by least-squares145

estimation.146

(3) The power spectrum of the ICs was checked to see if it follows a low-frequency peak and a high-147

frequency steady pattern (the time courses of ICs are characterized by high dynamic range) (Griffanti148

et al., 2017).149

Following the practice presented in (Bonkhoff et al., 2020; Tu et al., 2019), before passing the ICNs to the150

subsequent steps of the DFNC pipeline, additional post-processing of the time courses of all included ICNs151

was performed. The post-processing involved (a) linear, quadratic, and cubic detrending, (b) regressing out152

motion parameters (six realignment parameters and their �rst temporal derivatives), (c) low-pass �ltering153

with a high-frequency cut-off of 0.15 Hz (to retain only BOLD-related signal �uctuations (Calhoun et al.,154
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2001)), and (d) despiking using 3D despike. These actions ensure artifact noise has minimal impact on the155

signal analysis.156

2.5.2 Step 2: Sliding window cross-correlation scheme157

In the second step a sliding window is used to segment the timeseries of the ICNs into sub-fragments.158

For each time window the correlations between the ICNs during that window were calculated. There159

is no consensus in terms of the window size and the length of the sliding step. However, prior studies160

provide evidence that a window size between 30s and 60s enables successful estimation of DFNC giving an161

appropriate balance between accurate calculation of the correlation and the ability to detect time variations162

in the ICN timeseries (Líegeois et al., 2016; Preti et al., 2017; Hindriks et al., 2016). Thus, in our experiment,163

we opted for the common parameter settings, where the width of the window is 22 TR time (Kim et al.,164

2017; Bonkhoff et al., 2020), windows were convolved with a Gaussian of� = 3 TR to smooth the transition165

between windows (Allen et al., 2014), and the window shifted with a step of 1 TR (Bonkhoff et al., 2020; Tu166

et al., 2019). The window cross-correlation produced 273 correlation matrices, representing the �uctuation167

of functional connectivity between the identi�ed ICNs. These matrices are Fisher's Z transformed before168

being passed to step 3 for clustering analysis.169

2.5.3 Step 3: Clustering analysis for brain state estimation170

Recurrent or repeating connectivity patterns in an fMRI scan are known as dynamic brain states. To171

identify these brain states clustering is performed using the k-means based clustering algorithm. The172

distance between clustering points was computed using the Manhattan distance (i.e., the “city-block”),173

which is the distance metric recommended for high-dimensional-space clustering (Aggarwal et al., 2001).174

The number of clusters is automatically computed by maximizing the ratio of within-cluster distance175

and between-cluster distance, and the optimal candidate is then manually estimated using the elbow176

method (Allen et al., 2014; Bonkhoff et al., 2020). For each subject the correlation matrices from step 2177

were grouped into different clusters according to the distance from the clustering centroid. This results in178

state labels for each of the time windows which are used in the dynamic feature calculations in the next179

step in order to investigate the difference between the young and elderly adult groups.180

2.5.4 Step 4: Dynamic feature extraction181

Next, the FC temporal characteristic evaluation as well as the dynamic graph analysis were performed.182

Following (Allen et al., 2014; Bonkhoff et al., 2020), using the state labels, four FC temporal characteristics183

were calculated as features for the between-group difference: (i) state fraction: the percentage of the total184

number of FC windows for one subject which take the given state; (ii) mean dwell times: the mean time185

a subject spent in a state without switching to another one; (iii) number of transitions: how many times186

a subject changed states; and (iv) transition probability matrix: the transition likelihood between the k187

connectivity states.188

The rationale behind the dynamic graph analysis is that, with the FC potentially �uctuating with each189

time window, so too the topological structure of the graph can vary. For the dynamic graph analysis, as190

shown in step 4 in Figure 1, the ICNs were de�ned as the nodes in the graph and the FC between them as191

the edges, thus for each participant a graph is obtained for each time window. To de�ne the adjacency of the192

nodes a threshold can be applied to the edges in the graph to produce an undirected and binary adjacency193

matrix. However, as the topological structure is not constant within one graph if using different network194

thresholds, the network sparsity method has been adopted in our experiment to avoid the bias of unstable195

measures in between-group dynamic feature comparison (Kim et al., 2017; Xia et al., 2019; Zhang et al.,196
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2011; Rashid et al., 2021). Similar to prior studies (Hashmi et al., 2017; Tu et al., 2019; van den Heuvel197

et al., 2017), 10 thresholds ranging from 0.05 to 0.50 with a step of 0.05 were used to obtain the sparse198

network. Each threshold produced an adjacency matrix for each DFNC matrix.199

Having obtained the adjacency matrices then, graph theory was applied to investigate the topological200

organization of the DFNC state and the series of graphs. Speci�cally, we use 12 graph metrics to measure201

the graph characteristics and dynamics during the fMRI scan. For example, network ef�ciency, measures202

how ef�ciently a node exchanges information or communicates with other nodes within a network. The203

other selected metrics include assortativity, global and local ef�ciency, and synchronisation, which depict204

a brain function network's resilience, segregation, and integration. Detailed de�nitions of these graph205

metrics and their formulas are listed in Table 1 in the Supplemental Materials: Appendix 1. To balance the206

sparsity selection for the sequence of thresholds, the area under the curve (AUC) for the metric values was207

computed. Then, the AUC was utilised as a graph feature for further analysis.208

2.5.5 Step 5: Statistics and machine learning tests209

The �nal step in the pipeline conducts statistical testing to examine the results. To obtain robust and210

reliable results on ageing-related variations within and between groups, a non-parametric permutation test211

with 5000 randomizations was implemented for all of the dynamic features produced in the DFNC analysis212

pipeline. The difference in the means of the distributions yielded after the 5000 random permutations213

served as the t statistic. In addition, we investigated the presence of the distinct transient brain states214

across different age groups by performing a two-sample t-test. All statistical results were corrected by false215

discovery rate (FDR) for multiple comparison correction with a signi�cance level ofp < 0:05.216

Meanwhile, nine machine learning algorithms were implemented to examine the power of the dynamic217

features to predict the age of an individual. These algorithms were exploited to learn a mapping from the218

raw fMRI space,X , to the age distribution of participants,Y. That is:� : G(X ) ! Y given the fMRI219

scan collection of training samplesT =
�

(xn ; yn)
	 N

n=1 . Here,N is the number of training sample scans,220

xn 2 X is the input scan andyn 2 Y is the associated age label indicating if the participant is an elderly221

adult.G = f gi g
V
i=1 is the function extracting dynamic FC features, andV is the number of features.222

These algorithms were all implemented using the sklearn python package. For the 6 methods listed in223

Table 1 the default setup with the given parameters was used. In addition, we developed a neural network224

method using Keras's deep learning package. Considering our small sample data size could cause problems225

with over-�tting in the training phase for complicated network structures, a 2-layer forward neural network226

(FNN) was developed. The �rst and second layers of the neural network compose of 256 and 2 neurons227

(corresponding to the number of age categories.). At the end of the �rst and second layers, there is a tanh228

and sigmoid activation function to learn the non-linear mapping relationship. The model is trained by229

minimising the loss function:230

L loss =
1
N

X

i

� [yi � log (pi ) + (1 � yi ) log (1 � pi )]; (2)

wherepi is the predicted probability. Finally, we test two ensemble fusion-based methods: one is231

Adaboost (Hastie et al., 2009), and the other one is Voting (Ruta and Gabrys, 2005). Both algorithms try to232

promote prediction performance by weighting multiple embedded estimators. In the Adaboost method, the233

default setup was opted for. In the voting method, the ensemble rule was set to be “hard”, which means that234

the predicted class labels for majority voting will be the �nal prediction results.235
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Table 1. Machine learning algorithms and their parameters.

Algorithm Parameters

Nearest Neighbors number of neighbors = 2
Linear SVM regularisation parameter = 0.025
RBF SVM same as Linear SVM
Gaussian Process default
Decision Tree depth = 5
Random Forest number of neighbors = 5, number of estimators = 10

The dynamic feature output bygi was singly fed into these machine learning methods to examine whether236

the ageing group classi�cation facilitates dynamic classi�cation. In addition, we have also cascaded the237

outputs ofG(X ) together to examine if the concatenated dynamic feature can promote the performance.238

3 RESULTS

3.1 Intrinsic connectivity networks239

Of the 100 ICs identi�ed by the group ICA, 40 ICs were identi�ed as noise components and then240

discarded. The remaining 60 components were �nally identi�ed as ICNs. The 60 ICNs were assigned to241

one of six domains that have been widely studied in normal ageing (Snyder et al., 2021; Xia et al., 2019)242

(Figure 2): subcortical domain (SC), auditory domain (AUD), visual domain (VIS), sensorimotor domain243

(SM), cognitive control domain (CC), and default mode domain (DMN). The detailed component labels244

and peak coordinates of each ICN have been provided in the Supplementary Material:Appendix 2.245

3.2 Static functional network connectivity analysis246

Figure 3 shows the static functional network connectivity aggregated over the entire scanning time series247

using the group ICA method. The red colour indicates a positive correlation, and the blue colour represents248

a negative correlation between functional spatial regions. With the static functional network connectivity,249

we observed strong intra-domain connectivity, i.e., connectivity within the DMN, SMN, VIS, and AUD250

domains was positively correlated. In contrast, the inter-domain connectivity was comparably low, where251

the functional regions in the 6 domains were either independent of each other or negatively connected. This252

phenomenon was particularly obvious for the SC domain, where the connectivity with the other 5 domains253

was nearly all negative. Within the SC domain, the brain areas also exhibit negative connectivity.254

Further reviewing the difference in connectivity from the elderly group and the younger using a two-255

sample t-test, 193 connectivity pairs show signi�cantly altered between-network connectivity components.256

The signi�cant alterations in ICNs have been denoted with an asterisk in Figure 3(A), from which we257

can see that these alterations are mainly related to the CC domain. Post t-tests, contrasting elderly adults258

and younger controls, reveals ageing-induced reduced connectivity (p < 0:05, FDR-corrected). From259

Figure 3(B), we can see only the connectivity between SM and CC domains was left after post t-tests in260

group ICA (p < 0:05, FDR-corrected). This result shows consistency with the studies that show higher261

connectivity between the somatosensory and control network (Geerligs et al., 2015).262
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