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ABSTRACT Functional magnetic resonance imaging (fMRI) has emerged as a prevalent tool for investi-
gating motor deficits and rehabilitation in the context of stroke. Particularly, the exploration of functional
connectivity (FC) through resting-state fMRI has the potential to unveil the neural connectivity mechanisms
underlying post-stroke motor impairment and recovery. Despite the significance of this approach, there exists
a gap in the literature where a comprehensive review dedicated to post-stroke functional connectivity analysis
is lacking. In this paper, we undertake an extensive review of both static functional connectivity network
analysis (SFC) and dynamic functional connectivity network analysis (DFC) in the context of post-stroke
motor dysfunction. Our primary goal is to present comprehensive methodological insights and the latest
research findings pertaining to motor function recovery after stroke. We commence by providing a succinct
overview of SFC and DFC methods, elucidating the preprocessing and denoising techniques essential to these
analyses. Subsequently, we summarize the application of two methods in stroke disease, mainly focusing on
the extracted insight into post-stroke brain dysfunction and rehabilitation. Our review indicates a prevalence
of SFC as the method of choice for post-stroke functional connectivity investigations. Specifically, SFC
studies reveal a reduction in FC between motor areas due to stroke lesions, with increased FC correlating
positively with functional recovery. Nevertheless, the DFC for post-stroke analysis has only begun to unveil
its potential due to its ability in temporal dynamics. In summary, this review paper presents a thorough
understanding of post-stroke functional connectivity analysis and its implications for the study of motor
function recovery, offering valuable insights for future research and clinical applications.

INDEX TERMS Stroke, fMRI, Functional Connectivity, Static Functional Connectivity analysis, Dynamic

Functional Connectivity analysis

I. INTRODUCTION

Ccording to the report on Global Burden of Disease [1],

stroke is the second leading cause of death and the
second largest cause of disability. Across the globe, there
were 101 million stroke cases and 13.7 million new stroke
survivors in 2019 [2], which is nearly five times that of 2013.
As more than 60% of the survivors are left with severe se-
quela, stroke has become the largest known cause of complex
disability [3], and 77% of stroke survivors suffer from slow
upper limb or hand movement disorder [4].

With the sharp growth of stroke survivors, various restora-
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tive therapies were proposed to assist stroke survivors in
improving their motor function deficits [5], [6]. However,
the effectiveness of the rehabilitation measures varies from
individual to individual. Not every patient recovers their limbs
to some extent after a stroke; even for individuals with iden-
tical levels of initial functional impairment, the rehabilitation
effects vary greatly among people [7], [8]. Many unknown
factors influence the outcome of recovery [9], [10]. Since the
lesions that result in post-stroke disability are located in the
brain, to gain insight into these factors, it is crucial to com-
prehend the processes in the brain when function recovery
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occurs.

Emerging evidence has revealed that post-stroke recovery
is a time-dependent process. The interrupted connectivity
within the central nervous system reorganizes in structure and
function over time to adapt to damage caused by a stroke.
Hence, a number of cross-sectional [11]-[16] and longitudi-
nal studies have been carried out recently to gain insight into
this process [17]-[22]. By taking advantage of the dynamic
alteration of the brain connectivity network, these studies can
identify relevant behaviour of the brain system. For instance,
how recovery adapts structurally and functionally over time
and how this adaptation underpins functional recovery [23].
In addition, the structural or functional connectivity dynamics
in brain network reorganization can help reveal what factors
promote or impede the recovery process. Thus, informing
more productive intervening therapies in accordance with this
neural network modulation and ultimately facilitating greater
rehabilitation programs.

Structurally, stroke lesions are considered one of the most
important factors that cause network disconnection. Interest-
ingly, after stroke, the lesion-surrounding regions can bypass
the damage and rebuild connections to support the patient in
relearning the lost function [10]. For example, one study [24]
has demonstrated that a corticospinal tract (CST) connecting
the cerebellum and the primary motor cortex will be generated
after stroke, and these newly found physical connections are
associated with skillful motor control. As a pathway connect-
ing the motor cortex with motor neurons projecting from the
spinal cord, CSTs play an essential role in the motor control
system [25]. Once a CST is damaged due to lesions following
stroke, alternative pathways will be recruited to compensate
for the lost connections [24] and thus result in further change
in structural connectivity [26].

Beyond impairing local physical connectivity, a stroke le-
sion can also alter the neural interaction between directly
or indirectly connected brain areas [27]. This interaction
(or communication) is shown with functional collaboration
between brain regions, which is also referred to as func-
tional connectivity (FC) [28]. Over the past few decades,
the changes in functional network architecture during stroke
recovery have been continually reported. A common finding
in numerous studies looking at post-stroke FC is the decreased
interhemispheric FC at the initial stage after stroke. Yet, this
abnormal FC will develop normally two weeks after stroke
onset and return to near ordinary levels with great possibility
[29]-[31]. This gradually enhanced FC is demonstrated to
favourably correlate with motor recovery in the subacute or
chronic phase [18], [30], [32].

Since FC has become an essential metric in neuroscience
related to stroke recovery, a variety of means of record-
ing brain activity have been utilized to explore the brain
FC patterns, including EEG (Electroencephalography), MEG
(Magnetoencephalography), and fMRI (functional Magnetic
Resonance Imaging). EEG and MEG measure the FC by
recording the electromagnetic neural activity, whilst fMRI
achieves this target by measuring the consistency of the blood
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oxygenation level-dependent (BOLD) signals across brain re-
gions over time. Among these methods, fMRI is a well-liked
non-invasive imaging method due to its high spatial-temporal
resolution [10], [33]. However, whether the connection is
evaluated at rest or when doing a task is a crucial factor that
cannot be overlooked in post-stroke FC analysis with fMRI
[34]. According to the observations across studies, these
two approaches often produce variable results. Resting-state
(rs)-fMRI has certain advantages compared with task-based
fMRI. The primary advantage is that studies with rs-fMRI
do not need to design the movement paradigm and quantify
the motor executive performance, which is a difficulty with
task-based fMRI studies and can be greatly diverse across
studies. Measuring task performance in, for example, a hand
grip task [35] and a hand movement task [36] are different.
rs-fMRI, on the other hand, provides a unified manner for
comparison between studies. Thus, rs-fMRI can facilitate fur-
ther understanding of recovery mechanisms, while the recov-
ery mechanisms discovered in a task-based fMRI study may
only be effective for particular tasks. Therefore, this review
concentrates on research employing resting-state fMRI to
examine brain functional connectivity following stroke.

If we consider analyzing FC, from the perspective of the
method of processing the rs-fMRI data, then there are also
distinctions between the assumptions made regarding the time
scales over which the brain functional connectivity evolves.
Conventional methods assume that the FC measures are sta-
tionary over a full MRI scan, while it has been shown that
the FC fluctuates even over a few seconds [37], [38] and the
static FC network is too simplistic to capture the complete
representation of FC evolution [39]-[41]. Recently, a growing
number of methods have been introduced to explore dynamic
functional connectivity following stroke and make an effort
to bring an all-new perspective to investigate the recovery
mechanism.

This review attempts to provide an overview of the latest
progress in the changes to brain motor functional architecture
following stroke from the perspective of static and dynamic
functional connectivity (SFC and DFC) networks. While in
2011, the longitudinal changes of resting-state functional
connectivity during motor recovery after stroke have been
evaluated [28], and the dynamic development of brain con-
nectivity after stroke has also been documented in 2018 [23],
areview concentrating on post-stroke functional connectivity
analysis from the standpoint of the techniques has not yet
been provided. Hence, a summary of the most recent findings
has been produced by synthesizing the present understand-
ing of functional networks in the resting state from various
viewpoints (see 1 for the overview). This review provides po-
tential methodological guides and feasible references to map
the post-stroke neuroplasticity of brain circuits. Additionally,
the comprehension of resting-state functional networks under
different analysis methods provides valuable guidance for de-
signing dynamic neural rehabilitation interventions to benefit
stroke patients.

VOLUME 11, 2023



Kaichao Wu et al.: fMRI-based Static and Dynamic Functional Connectivity Analysis

IEEE Access

TABLE 1. Notations used in this review.

Abbreviation Definition

Abbreviation Definition

AIS Acute Ischemic Stroke
AN Auditory Network
ARAT Action Research Arm Test
BOLD Blood Oxygenation Level-Dependent
DFC Dynamic Functional Connectivity
DLPEFC Dorsolateral Prefrontal Cortex
DMN Default Mode Network
FC Functional Connectivity
FCN Functional Connectivity Network
FMA Fugel-Mayer Assessment
fMRI Functional Magnetic Resonance Imaging
FNC Functional Network Connectivity
HMM Hidden Markov Model
ICA Independent Component Analysis
M1 Primary Motor Cortex
MFG Middle Frontal Gyrus

mRS Modified Ranking Score
MTG Middle Temporal Gyrus
NIHSS National Institutes of Health Stroke Scale
PCA Principal Component Analysis
PCC Posterior Cingulate Cortex
PMC Premotor Cortex
PoCG Postcentral Gyrus
PPC Posterior Parietal Cortex
PrG Precentral Gyrus
ROI Region of Interest
MPFC Medial Prefrontal Cortex
SFC Static Functional Connectivity
SMA Supplementary Motor Areas
SMN Sensorimotor Network
TD Tensor Decomposition
WTC Wavelet Transform Coherence

il. METHODOLOGY

A. LITERATURE SEARCH

The literature search was restricted to English-language arti-
cles published between January 2000 and May 2022 in the
following electronic databases: PubMed, Web of Science,
IEEE Xplore, ScienceDirect, MEDLINE (OvidSP), CDSR
(Cochrane database of systematic reviews), Scopus, Compen-
dex, Wiley Online Library, Academic Search Premier, and
Springer Link. The electronic search terms were Stroke AND
fMRI AND Functional Connectivity AND Motor deficit
AND Rehabilitation. Studies that include task-related fMRI
or involve effective connectivity or extend beyond motor
function were excluded. This review included studies that
explore the development of functional connectivity analy-
sis methods, particularly, those studies that employ these
approaches for post-stroke motor function impairment and
rehabilitation.

B. TERMS AND DEFINITION
1) Notation
A list of notations is given in Table 1.

2) Post-stroke stage

Throughout this review, the terms: acute, subacute and
chronic stages refer to the three phases of recovery after a
stroke. The timeline of these phases, which spans from the
time of the initial stroke to years afterwards, is summarized
in Figure 2. Their definition is in accordance with the recom-
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mendation of [42] and previous studies in stroke rehabilitation
programs [43], [44].

3) Functional connectivity, functional network connectivity
and functional connectivity network

The terms Functional connectivity (FC), functional network
connectivity (FNC), and functional connectivity network
(FCN) are frequently used by authors in the studies reviewed
in this paper. These nouns are so similar that the readers
risk becoming confused if they are not attentive. Here, FC
is defined as correlation (or other statistical dependencies)
among spatially remote brain regions [45]. The process of
inferring functional connectivity among multiple brain re-
gions by calculating pairwise correlation is summarized in
Figure 3(a). FNC can be seen as a higher level FC, which
refers to a statistical dependency among large-scale func-
tional networks (or functional domains) in the brain [46], for
example, the default mode network (DMN) [47] and sensori-
motor network (SMN) [48]. A representation of brain regions
that are involved in the functional networks may be found in
Figure 3(b). Unless otherwise stated, the FC and FNC refer to
a pairwise Pearson’s correlation in this review. By contrast, a
Functional Connectivity Network (FCN) is a concept based
on FC and FNC. It refers to a functional connectivity graph
where the vertices represent the brain regions and the edges
represent the strength of FC/FNC between these regions.
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FIGURE 1. Overview of fMRI-based Static and Dynamic Functional Connectivity Analysis for Post-stroke Motor Dysfunction Patient.
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FIGURE 2. The phases of post-stroke recovery.

4) Motor recovery measurement
Clinically, motor recovery after stroke is measured by the
absolute difference between baseline and subsequent motor
function scores [49]. This can be best achieved by comparing
the motor function assessment at longitudinal time points. In
the studies reviewed in this paper, there are several methods
used by the authors to evaluate the post-stroke motor func-
tion, including the Fugl-Meyer assessment (FMA) scale [50],
which evaluates patients’ single-joint and multi-joint motor
ability, loss of co-motor energy, finger individualization abil-
ity, movement speed, measurement impairment, ataxia, and
motor reflex, and the paralysed hand function assessment
scale [51] which measures the degree of paralysed hand for
stroke patients. Other evaluation methods include the ac-
tion research arm test (ARAT) [52], modified Rankin score
(mRS) [53], etc.

Beyond motor function assessment, comparing the post-
stroke recovery stage that the stroke patient is in at different
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FIGURE 3. (a) Inferring functional connectivity among multiple brain
regions by calculating pairwise correlation; FCN: a functional connectivity
graph can be generated where the vertices represent the brain regions,
and the edges represent the strength of FC/FNC between these regions.
(b) The large-scale functional networks: the default mode network (DMN),
which involves the medial prefrontal cortex (MPFC), posterior cingulate
cortex (PCC), bilateral hippocampus; and the sensorimotor network
(SMN), which includes supplementary motor areas (SMA), primary motor
cortex (M1), primary sensory area (S1), posterior parietal cortex (PPC).

time points can help demonstrate the motor recovery process.
One of the most well-known methods of measuring the stroke
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recovery stages is the Brunnstrom stages, also known as the
Brunnstrom approach [54]. By classifying the assessment
score into distinct zones, the National Institutes of Health
stroke scale (NIHSS) or the evaluation scale indicated above
are widely used to estimate the patient’s stroke recovery
stages. This partition can also be utilized to divide the patient
sample into subgroups affected by stroke. Hence, in many
cross-sectional studies, the relationship between the FC and
motor recovery can be investigated by examining the FC
alteration between different groups [55], [56].

Ill. FMRI PROCESSING FOR DFC AND SFC

A. PRE-PROCESSING AND DENOISING RS-FMRI

By sampling the brain’s three-dimensional (3D) volume every
1-2 s (or faster), MRI scanning can obtain the brain landscape
map at the millimetre spatial resolution. The BOLD signal
contrast can be extracted within a full MRI scan, with the
BOLD signal variance representing the resulting brain neural
activity through multivariate time series. As the BOLD signal
is weak and suffers from the noise of multiple sources, the raw
fMRI data needs to undergo extensive pre-processing before
further analysis. Pre-processing of rs-fMRI signals typically
included the following steps:

1) removing a number of volumes from the beginning of
the MRI scan in order to obtain a steady BOLD signal
(typically, 3 [57] or 10 [13]);

2) slice timing correction;

3) realignment for head motion;

4) outlier detection for scrubbing;

5) registration to structural images, segmentation [58] and
lesion-masked normalization [59];

6) spatial smoothing using a full-width at half-maximum
(Gaussian kernel (4 or 8 mm recommendation).

Note that this is a general pre-processing pipeline. In the
studies, the processing methods and their orders can vary
according to specific applications and tasks.

Despite the capacity of the processes used in the pre-
processing to remove the majority of brain activity distur-
bances, the BOLD signal often still contains considerable
noise or non-neural variability. This can be the result of a
combination of physiological, outlier, and residual subject-
motion effects [60], [61]. These residual noise components in
the BOLD signal will introduce strong and observable biases
in all functional connectivity measures. Therefore, there are
typically additional strategies to remove or at least minimize
these underlying interferences in the context of functional
connectivity. These strategies generally implement a denois-
ing step, which can include linear regression of potential
confounding effects in the BOLD signal (e.g. effects from
the grey matter, white matter, and cerebrospinal fluid), linear
detrending, and temporal band-pass filtering. As with the pre-
processing, the denoising strategies have no gold standards,
they are variable across the study methods and tasks.

Figure 4A and B illustrate various pre-processing steps and
denoising strategies. One item to note is that while nearly all
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studies reviewed in this paper introduce the pre-processing
step, the denoising step has not always been emphasised. The
denoising step has been proven to benefit FC estimation by
improving the signal quality and reducing the motion arte-
facts [60]. Hence, these additional denoising strategies should
be encouraged to be gradually introduced into stroke studies.
Doing this should enlarge the variability in FC alteration
caused by stroke and then promote more reliable and accurate
results.

Several existing open-source tools can perform the pre-
processing and denoising steps to enable the fMRI data for
analysis to be obtained reliably and rapidly, including the
Statistical Parametric Mapping software package (SPM) [62],
the FMRIB software library (FSL) [63], the Data Processing
Assistant for Resting-State fMRI (DPARSF) [64], CONN
toolbox [65], and the graph-theoretical network analysis tool-
box (GRETNA) [66].

B. TIME SERIES EXTRACTION

After the raw rs-fMRI has been pre-processed and denoised,
time series from the different brain areas during the fMRI scan
have to be extracted for functional connectivity analysis. The
methods for time series extraction are mainly divided into two
categories: ROI-based and data-driven methods.

The ROI-based method relies on predefined regions of
interest (ROI) to extract the time series for different brain
areas. As the motor control region in the brain, nearly all
investigations linked to post-stroke recovery of motor activity,
include the primary motor cortex (M1) as one of their ROIs.
Meanwhile, the supplementary motor area (SMA) is another
region frequently investigated as an ROI. Decreased connec-
tivity between M1 and SMA has been found across studies
in stroke patients. Beyond M1 and SMA, other regions, in-
cluding the premotor cortex, and inferior frontal gyrus, are
also predefined as ROIs to investigate abnormal inter-regional
connectivity following stroke. In addition, to manually set
regions, the anatomical atlas is often used to identify ROIs.
There are typically three anatomic atlases used to define brain
regions: Destrieux [67], Harvard-Oxford [68] and AAL [69]
atlas (see Figure 4C for the three anatomical atlases).

Data-driven methods, by contrast, do not pick brain areas
beforehand and do not require prior knowledge of specific
brain regions. Specifically, they use multivariate voxel-wise
projection techniques such as independent component analy-
sis (ICA) or its variants (e.g., group ICA) to decompose the
raw fMRI data into multiple independent components (ICs).
Each IC represents a brain area with independent brain ac-
tivity. Figure 4C shows the diagram of the spatial ICA-based
time series extraction method. Having obtained the ICs, these
will then be visually inspected to identify if the brain areas
they represent have brain activity because of a nerve action,
or if this activity is just caused by noise. For instance, the
spatial map of an IC with true brain activity can be matched
with the previous anatomic brain function map. Meanwhile,
their power-frequency curve has a specific fluctuating pattern
(peak at low frequency, decrease rapidly, and then remain
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relatively stable). The identified ICs are recognized as form-
ing intrinsic connectivity networks (ICN). These ICN can be
utilized for further functional connectivity analysis between
functional areas or high-level functional connectivity between
brain functional domains (e.g., the default mode, sensorimo-
tor, subcortical, and cerebellar functional networks).

C. STATIC AND DYNAMIC FUNCTIONAL CONNECTIVITY
ESTIMATION

1) Static functional connectivity estimation

Typically, SFC estimates functional connectivity between two
brain regions by calculating the pairwise correlations between
their time series. Mathematically, the static functional con-
nectivity between two regions i and j can be expressed as

COV (X, X))

SFC;; = s

(D

where

¢ X; and X; represent the time series of brain activity for
regions i and j, respectively.
o COV(X;,X;) is the covariance between the time series of
the two regions.
o 0y, and oy, are the standard deviations of the time series
X; and X;.
In the case of fMRI analysis, this correlation is frequently
quantified with a canonical correlation coefficient [70]-[72],
that measures the similarity of amplitudes of BOLD fluc-
tuations. There are also studies using indices-based phase
coupling measures, including the coherence [73] :

P(X;,X;)
Cy=—20 @)
R/ VPx;
where
6

o Py, and Py, are power spectral densities of brain activity
for regions i and j, respectively.
o P(X;,X;) is the cross spectral densities of X; and X;.
or phase-locking relationships [74]:

PLV, = % zl: (X)) —a(X;) 3)
here

o N is the number of time point of BOLD timeseries.

o ¢(X;) and ¢(X;) are the Hilbert transform of timecousre

Xi and )(j

The pairwise correlations between region nodes or func-
tional domains can construct a functional connectivity net-
work (FCN) representing the brain’s functional connectivity
profile. Usually, before performing the group-level FC anal-
ysis, the individual correlation-based FC is transformed to
a normally distributed Z-score using Fisher’s r-to-Z trans-
formation. Using the Z-score can be beneficial as it is not
bounded by upper or lower limits, so it prevents the distribu-
tion of the results from becoming skewed close to the limits,
which is helpful for further statistical analysis.

Based on the pairwise correlations, many SFC analysis
methods exist, such as the FCN density analysis method [20],
the Regional homogeneity (ReHo) based approach [75] and
Kendall correlation coefficient (KCC) approach [76]. In addi-
tion, considering the investigated brain regions as nodes and
the pairwise correlations as edges, the functional connectome
can be viewed as an adjacency matrix or graph. Hence, the
FCN can be naturally analysed with graph-based methods.
For example, clustering coefficients, global efficiency and
local efficiency of the FNC graph can be calculated with
graph theory [77], and these graph-based measures can be
integrated to analyze the functional connectivity of the brain.

VOLUME 11, 2023
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2) Dynamic functional connectivity estimation

The development of DFC analysis for rs-fMRI was incited
by the fact that the FC/FNC between regions or voxels may
change in a short period [37]. There has been an accumulation
of evidence demonstrating that the FC/FNC variation follows
certain functional coupling patterns over time [78], [79], and
these fluctuating coupling patterns support the brain regions
in processing different functional requirements [79].

A multitude of approaches to quantify these dynamic pat-
terns and their properties have been introduced (detailed re-
views related to dynamic functional connectivity can be seen
in [39], [79]-[81]). The most common and straightforward
way to measure the DFC is by calculating the FC/FNC be-
tween regions/voxels in consecutive time periods (i.e. win-
dows):

_ cov(Xi(r), X;(1))

DEC; (1) = SV, A1) 4
i10) TX,(1) TX,(1) @

where:

e X;(t) and X;(¢) are the time series of brain activity for
regions i and j within a specific time window centered at
time 7.

o COV(X;(t),X;(t)) is the covariance between the time
series in this window.

e 0x,(1) and oy, are the standard deviations of the time
series within this window.

The window length is usually constant across a sliding
scheme spanning the full scan. The step size of the sliding
window scheme is generally less than the window length;
thus, two adjacent windows can partially overlap. With the
sliding window method, thousands of FC/FNC matrices can
be generated at the window length level. From these windows
successive matrices which exhibit the dynamic evolution of
the brain state within an MRI scan are obtained. Thus, the
fluctuations in the time course of the connectivity can easily
be assessed. The measurements to quantify the fluctuations
include the temporal standard deviation(o) [21], [22], coeffi-
cient of variation [82]:

CVyp = — (5)

where o is temporal standard deviation and p is mean of X (¢)
, or amplitude of low-frequency fluctuations (ALFF) [83].
In addition, matrix factorization techniques can summarise a
series of FNC patterns into multiple FNC states. With recur-
rent or repeating connectivity patterns/states representing the
underlying functional coupling patterns. The typical method
used to summarize the connectivity patterns is K-means clus-
tering [84], which has been widely used in fMRI studies for
DFC analysis since a study by Allen et al [40]. The clustering
approach reveals the reoccurring connectivity patterns from
the windowed FC matrices and reflects the dynamic brain
states corresponding to ongoing processing.

Another representative approach to summarising the brain
state is the innovation-driven co-activation patterns (ICAPs)
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method [81]. ICAP method does not rely on the sliding win-
dow scheme but needs a clustering algorithm’s assistance.
It identifies BOLD signal transients (or innovation frames)
and feeds them into clustering methods to obtain iCAPs [39],
[85]. Besides these there are also several other DFC meth-
ods, such as principal component analysis (PCA) [86], dic-
tionary learning (DL) [87], [88], the tensor decomposition
(TD) methods [89], the dynamic community detection based
method [90]-[93], the Hidden Markov Model (HMM) [94]
and the wavelet transform coherence (WTC) [95]. However,
in studies about post-stroke motor dysfunction, these methods
are rarely investigated for DFC analysis.

3) SFC and DFC comparison

In principle, the SFC method assumes that FC/FNC is sta-
tionary over MRI scan time, and the functional connectivity
is constant during an MRI scan. Nevertheless, SFC ignores
that the human brain is a dynamic system that fluctuates
even at the time scale of milliseconds [96]. Therefore, DFC
analysis approaches have developed rapidly in the last decade
to investigate the dynamic nature of the brain. In terms of
the methodology, SFC analysis approaches are based on the
average FC/FNC that aggregates over an entire fMRI scan.
Despite SFC’s methodological simplicity and ease, SFC ap-
proaches can clearly show disease-induced FC alterations.
This is particularly important when investigating the impact
of damage on specific brain functional areas. For example,
many post-stroke studies have employed SFC to investigate
the changes the stroke-lesion has caused in FC and to verify
if the post-stroke FC reorganization can underpin functional
recovery [55], [56], [97]. For that reason, the SFC can provide
a valuable reference to functional rehabilitation programs.
In clinical trials SFC has been used to identify regions with
weakened FC. These regions can then be targeted using in-
vasive or non-invasive tools (e.g. the transcranial magnetic
stimulation [31], [98]) to restore the FC and help the affected
brain motor function areas promote recovery [99].

By contrast, DFC analysis approaches employ time-
resolving or signal decomposition methods to investigate a
time-varying FC/FNC that spans the fMRI scan. DFC can ex-
tract relevant dynamic features to reflect functional network
flexibility and brain state transition. However, despite this
potential of DFC analysis, only a handful of studies have em-
ployed such time-resolved approaches to explore the dynamic
neural mechanism following stroke. In contrast to the thriving
research of DFC methods in other neurological diseases such
as Parkinson’s disease [100] and Huntington’s disease [101],
DFC analysis on rs-fMRI following stroke is still develop-
ing. Besides, compared with SFC analysis, DFC approaches
typically have complicated mathematical/probability theo-
ries [49] (e.g., the HMM-based DFC analysis [94]). Hence,
DFC is not as user-friendly to those clinicians without math-
ematical or engineering backgrounds. Furthermore, due to
increased fMRI temporal-spatial resolution, the DFC is more
sensitive to noise [39], [79]. Thus, the extra hyper-parameter
setup (e.g., the window length and sliding window step size
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TABLE 2. SFC and DFC comparison.

Definition Methods

Pros

Cons

Pairwise correlation;

SFC FC remains static during fMRI FCN density [20];

scan

Regional homogeneity [75];

Graph theory [77];

Mature application;

Brain region focused;

Clearly demonstrates FC alteration;

Applied in clinical trials.

Overly simplistic methodology;

Ignores brain FC dynamics;

Exhaustively studied - may have reached
limits.

Sliding window [40];
PCA method [86];

DL method [87], [88]
TD method [89];

DCD method [90], [911;
HMM [94];

WTC [72];

DFC  FC continuously fluctuates

Increased temporal-spatial resolution;

Reflects network flexibility;

Complicated mathematics [49];

Sensitive to noise;

Exhibits brain state transitions.

Long process to get to clinical trials.

in the sliding-window DFC method) needs to be fine-tuned to
verify the validity of the results [79], [80].

Overall, SFC and DFC both have advantages and disad-
vantages (summarized in Table 2). Compared with DFC,
SFC analysis is more mature and has more applications in
post-stroke fMRI analysis; however, the DFC analysis can
capture the intrinsic dynamic nature of the brain, which shows
a potential promising prospect. Even though DFC models
can rarely be seen in post-stroke studies currently, they are
expected to boom in the future of post-stroke investigation.

IV. STATIC CONNECTIVITY ANALYSIS
A. DECREASED FUNCTIONAL CONNECTIVITY IS A
COMMON FINDING

In numerous rehabilitation studies estimating resting-state
FC, a comparison of results from stroke patients with those
from healthy controls commonly found a decrease in inter-
hemispheric FC in the functional network or at least between
some regions. This reduction is caused by the disruptions in
multiple large-scale functional brain networks, which have
been viewed as one of the characteristics of motor impairment
following stroke [29].

Looking at these results in detail, this decrease in inter-
hemispheric connectivity is more distinct than in intrahemi-
spheric connectivity. The lowest level of FC appears in the
acute phase of stroke, and the earliest time this finding has
been observed is within a few hours post-stroke [102]. Hence,
interhemispheric FC reduction is often studied in AIS pa-
tients. For example, Liu et al. [20] observed disrupted inter-
hemispheric FC between the motor cortices of acute stroke
patients, which was associated with motor deficits. A recent
study investigating dynamic structural and functional reor-
ganizations following motor stroke reported a significantly
lower interhemispheric FC in the first week [17]. In addition,
Nai-Fang et al. [11] observed decreased interhemispheric FC
within the cortical motor network in the first acute unilateral
ischemic stroke patients. Specifically, the FC between the
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ipsilesional M1 and contralesional M1, contralesional post-
central gyrus (PoCG), dorsolateral premotor cortex (PMC)
are significantly lower than that in controls. Besides the acute
stage, interhemispheric FC reduction can also be observed
in the post-stroke subacute and chronic stages. In [18], the
FC between M1 and the contralateral cerebral cortex was
reduced in stroke patients with unilateral ischemic motor
neural network injury 2 weeks after onset. Additionally, the
stroke participants recruited by [13] showed a decreased FC
between the ipsilesional SMN and the contralesional SMN
and auditory network (AN), which supports the early findings
in [103] that the disruption of interhemispheric interactions
between bilateral SMNs may result in motor deficits in pa-
tients with chronic stroke.

Beyond interhemispheric FC, the decreased contralesional
M1 FC can be found in study [104]. The lowest FC levels in
the contralateral sensorimotor cortex are 2 weeks after stroke.
Results reported in [105] show reduced within-network FC in
the contralesional precentral gyrus within the dorsal sensori-
motor network and the contralesional superior parietal lobe.

B. BRAIN FUNCTIONAL CONNECTIVITY NETWORK
TOPOLOGY SUPPORTS DECREASED FC

The brain FCN can be described as a set of nodes (ROIs or in-
dependent components) connected by edges (functional con-
nectivity measure). Thus, graph theory analysis on FCNs can
provide important information about the topological proper-
ties of the brain’s functional network. When analyzing FC
from the perspective of a brain graph, the various FC network
topology measures also indicate reductions in FC in contrast
to a healthy brain.

In terms of local topological measures of the FC graph, a
study has proved the shortest path length to be lower than
healthy controls in AIS [107] and the clustering coefficient
was reported to decrease [108]-[110], though [107] suggested
that stroke patients maintained the local clustering coefficient.
In addition, another local measure, the weighted node degree
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which measures the number of connections, has been found to
decrease in the contralesional M1 of patients with limited re-
covery post-stroke [111]. There are no significant findings in
topological measures between patients and controls reported
in other studies following stroke [110].

Regarding the global topological measures of FCN, a re-
duction in network modularity was observed in an exper-
iment including 25 patients with focal lesions because of
stroke [15]. This finding was consistent with the decrease
in interhemispheric function integration. Modularity is mea-
sured by the connection density within communities over that
between communities and reflects the degree of functional
integration and segregation [112]. A recent study [19] sup-
ported the findings in [15], with significantly lower modu-
larity found in patients compared with controls, indicating
decreased segregation in the FNC. Beyond modularity, other
global measures of the FC network tended to decline. In[110],
the FC concordance, which measures the network stability in
time, was observed to decrease over time in contrast to intact
networks. In addition, the small-worldness which reflects
the ability of brain networks to satisfy the needs of local
and global information processing, was significantly lower in
patients than controls two weeks after stroke [113].

There is a great variety of graph theory-based topology
measures, resulting in various dynamic patterns in the net-
work topology being investigated in studies. In general, the
graph topology alteration of FCN post-stroke can be inter-
preted in a concept of network randomization [15], the way
the network reorganizes itself to adapt to the lost function,
which also demonstrates the process of neuroplasticity that
occurs in the brain post-stroke.

C. INCREASED FUNCTIONAL CONNECTIVITY IS
POSITIVELY RELATED TO RECOVERY

Even though decreased FC relative to healthy controls is the
dominant trend in patients following a stroke, many findings
also include increased FC. Several longitudinal studies have
demonstrated that the interhemispheric FC in the SMN first
decreases in the early stages after stroke while increasing in
the following weeks or months [30], [104], [114]. Other stud-
ies support this FC-increased finding as well. For example, in
a systemic study [29], decreased FC was observed in stroke
patients between the ipsilesional M1 and the sensorimotor
cortex, the occipital cortex, the middle frontal gyrus (MFG)
and the posterior parietal cortex (PPC), while the increased
FC was also shown between ipsilesional M1 and cerebellum,
the thalamus, the MFG and the PPC. Besides, in the study
in [20], although the FC in the motor area decreased after
stroke, the opposite occurred in cognitive networks. In addi-
tion, a recent study [22] reported that compared with healthy
groups, the patients exhibit a significantly increased static FC
between a large number of structures, including ipsilesional
M1 and the contralesional precentral gyrus (PrG), contrale-
sional M1 and the ipsilesional PrG, contralesional precuneus;
ipsilesional MFG and precuneus, the contralesional cerebel-
lar, PoCG, ipsilesional sub-gyral region; SMA and ipsile-
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sional PrG, frontal-temporal space, MFG; ipsilesional SMA
and the ipsilesional middle temporal gyrus (MTG).

The increased FC post-stroke seems to be restricted to be-
tween specific structures [23]. The highly consistent finding
is that the increased FC occurred in connectivity with the
cerebellum [29], [110], [115]. FC in the cerebellum has been
reported to be crucial for recovery [116], [117]. Hence, the
conclusion can be derived that FC in the cerebellum is a
potential recovery mechanism. In fact, not limited to the cere-
bellum, many structures that found increased FC correlates
with motor recovery. One commonly mentioned brain region
is M1. Many studies have reported that FC increases between
the ipsilesional M1 and contralesional M1 and between the
ipsilesional SMC and contralesional SMC, and this increase
is related to better recovery [20], [115], [118]. In addition,
Ktena et al. [14] observed increased FC between lesion areas
and M1 in the unaffected hemisphere of the chronic patient.
They concluded that this phenomenon reveals the network
reorganization process associated with motor recovery. Fur-
thermore, the enhanced FC between M1 and SMA and other
motion-related regions like the dorsolateral prefrontal cortex
(DLPFC) has been be recorded and shown to be a potential
mechanism for motor function recovery [14], [119].

In many studies related to the prediction of motor recov-
ery or outcomes, increased FC is normally associated with
minor severity or a better motor functional outcome. In a
study that included 34 patients and healthy controls [17],
the authors found a significantly lower interhemispheric FC
in stroke patients compared to healthy controls in the first
week. This result supports previous common findings, how-
ever, following this period, the FC continued to increase to
week 12. Correlation analysis showed that the percentage
of FC changes was significantly positively correlated with
improved FMA scores from week 1 to week 4. In an early
prediction study [12], 37 stroke patients were scanned on day
3 after stroke, and the fMRI data were used to predict 90-day
outcomes. The results show that patients with good outcomes
had higher FC than those with poor outcomes. Including the
FC improved the model’s accuracy to 94.7%, reflecting that
increased FC plays an essential role in motor recovery. Stroke
patients at the chronic stage have been shown to exhibit a
similar increase in FC. In a study with a total of 107 partici-
pants, when compared to patients with a completely paralyzed
hand, patients with a partially paralyzed hand had increased
FC in the ipsilesional superior temporal gyrus, the ipsilesional
middle occipital gyrus and the contralesional calcarine [13].
This finding is supported by findings in a larger cohort of
patients with ischemic stroke at the acute stage. In a study
with 85 AIS patients, the FC between ipsilesional M1 and
contralesional PMD in patients with favourable outcomes was
significantly greater than with unfavourable outcomes [11],
which demonstrates that the increased FC can serve as an
independent outcome predictor.

The findings related to SFC are summarized in Table 3.
All studies agree the FC of the motor network is impaired
after stroke onset, with decreased FC a consistent finding, but

VOLUME 11, 2023



Kaichao Wu et al.: fMRI-based Static and Dynamic Functional Connectivity Analysis

IEEE Access

TABLE 4. The summary of DFC analysis with fMRI for post-stroke recovery.

Studies  Sub.  Stroke Ctrl.  Type Timing Extraction DFC Method Findings
Info. Methods
[21] 19 Ischemic 19 Longitudinal 7d; 2w; 3m Seed-based: AAL  Sliding window FC temporal variability: Reduced
stroke 116 ROIs approach temporal variability; Longitudinal
increased over the stages.
[22] 75 Ischemic 55 Longitudinal 7d-1m Seed-based: six Sliding window Increased dynamic FC between the
stroke ROIs (bilateral approach; ipsilesional M1 regions and
M1, SMA and Standard contralesional PrG, and a negative
PMC) deviation correlation between DFC in the regions
and FMA scores after stroke.
[57] 54 Ischemic - Cross-sectional <7d; >6m Voxel-based: ICA Sliding window Mild: lower variability values;
stroke (14t03 approach; Moderate-to-severe: higher dynamic
functional Sparse inverse connectivity variability fraction and
domain) covariance dwell time improve the prediction
matrix; performance.
k-means
clustering
[92] 15 Ischemic 15 Cross-sectional - Voxel-based: ICA Sliding window Mild patients were observed to have a
stroke (32t0 8 approach; significantly lower between-module
functional multilayer interaction than severe patients as well
domains) temporal network as healthy controls. In contrast, severe
patients showed remarkably lower
within-module interaction and had a
reduced overall interaction compared to
healthy controls.
[93] 15 Ischemic 15 Cross-sectional - Voxel-based: ICA Sliding window Severe affect stroke patients have
stroke (32t0 8 approach; reduced recruitment and increased
functional multilayer between-network integration; mild
domains) temporal network patients exhibited low network
flexibility and less network integration
[41] 31 Ischemic 17 Longitudinal within 2 week Voxel-based: Sliding window Severe subgroup: spatially segregated
stroke spatially approach; connectivity configuration; Regionally
constrained ICA k-means densely connected; Increased transition
(13 network clustering likelihood to the regionally densely
components) connected state. Moderate: weakly
connected configuration (low levels of
connectivity) spent more time.
[120] 41 Ischemic - Cross-sectional <7d; >6m Voxel-based: ICA  Sliding window NIHSS significantly correlated with
stroke 49t07 approach; fraction and dwell time of densely
functional k-means connected state.
domain) clustering
[121] 47 Ischemic - Longitudinal 2w; 3m; 12m Seed-based: 324 Sliding window The structure connection breaks
stroke ROIs and 19 approach; induced by stroke lesions cause the
subcortical ROIs k-means abnormal fraction times, dwell times,
clustering and transitions between dynamic states,
and this anomalies helps explain the
post-stroke impairment and long-term
outcome
[122] 15 Ischemic 15 Longitudinal Im; 2m; 3m; 4m; Sm  Voxel-based: ICA  Sliding window stroke lesions have significant and
stroke (32108 approach; enduring alterations in dynamic
functional multilayer behaviours within functional brain
domains) temporal network networks, resulting in distinct recovery

trajectories for these groups.
‘Whole-brain recruitment emerged as a
robust and reliable feature, achieving an
AUC of 85.93.

VOLUME 11, 2023



IEEE Access

Kaichao Wu et al.: fMRI-based Static and Dynamic Functional Connectivity Analysis

increased FC can also be observed. Increased FC is a form of
neuroplasticity, which means that the lost FC has tended to
increase to the normal level. From the perspective of neural
activation, the decreased FC implies the existing pathways are
disinhibited in the recruitment stage after stroke [10], and the
increased FC shows that the damaged pathways surrounding
the lesion area are newly built, thus improving motor func-
tion.

V. DYNAMIC CONNECTIVITY ANALYSIS

For patients with motor dysfunction following stroke, the
number of examples of DFC analysis is not as high as SFC.
However, from the existing investigations (summarized in
Table 4), we can conclude the following findings.

A. TEMPORAL VARIABILITY OF FC IS ALTERED
FOLLOWING STROKE

DFC analysis methods make use of the temporal variability of
FC to reveal neural dynamic properties and recovery mech-
anisms of stroke. The temporal variability between specific
regions illustrates the dynamic reconfiguration of the brain
system over time in response to ongoing processing. At a
global level, it reflects the degree of synchronization between
functional areas in the brain. However, the definitions of tem-
poral variability are not consistent across studies. The study
in [21] calculated the temporal variability between specific
regions as the average functional connectivity over different
windows. By contrast, the temporal variability of FC in [22]
was characterized as the standard deviation of time courses at
predefined seed regions across a series of windows (note that
this paper investigates the SFC and DFC at the same time).

In terms of the differences in temporal variability, Hu et
al. [21] reported a significantly reduced temporal variability
in stroke patients compared to the healthy group; however,
the brain regions that exhibited decreased FC temporal vari-
ability were distinct between post-stroke stages. In the acute
stage, the reduced regions cover the primary sensorimotor
and DMN, while only the ipsilesional PoCG and ipsilesional
anterior cingulate gyri (ACG) showed a declining trend in
the subacute stage. Nevertheless, this finding is incompati-
ble with the findings in [22], where an increased temporal
variability in ipsilesional M1 and contralesional PrG was
observed. This increase showed a longitudinal trend, which
was exhibited across the stages post-stroke.

To take advantage of the information gained from the
temporal variability, both studies investigated the relation-
ship between dynamic FC and motor function recovery post-
stroke. In [22], the authors detected a significantly negative
correlation between FMA scores and FC variability in ip-
silesional M1 and contralesional PrG. Whereas in [21], the
increased FC variability from the acute to the subacute stage
was reported to correlate positively with the increased FMA.
The results across the studies appear to be different, even
to some extent the opposite. However, this can be explained
due to the studies being reported in these publications having
different emphasises. Chen et al. [22] paid more attention to
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the variability of FC between the specific regions, while Hu et
al. [21] focused on the trend of FC variability across the differ-
ent post-stroke stages. In addition, the experimental methods
and the investigated subjects vary between the studies, which
partially leads to the diversity of results.

B. PREFERENCES IN TRANSIENT BRAIN STATES ARE
ALTERED IN MOTOR FUNCTION AFFECTED PATIENTS

The transition between connectivity states in diseases with
abnormalities in highly dynamic neural activity is an active
research topic in DFC analysis. The so-called connectivity
state is generally abstracted from the reoccurring BOLD
signal using a sliding window scheme and a clustering al-
gorithm. Thus, highly recurrent FC patterns within an MRI
scan are identified as connectivity states. A successive list of
these different states can vividly exhibit dynamic transitions
between the multiple brain states. This dynamic transition
globally reflects the FCN’s flexibility and can be used to
investigate the alteration or adaptation of dynamic interaction
between brain functional networks after stroke. The flexibility
and adaptation of connectivity states due to cognition or
psychiatric disorders has been illustrated in other studies. In
contrast, stroke-induced changes in brain states have rarely
been investigated. Recently, the abnormal connectivity states
in AIS has attracted the attention of researchers.

In a study that included 31 AIS patients [41], the authors
outlined three different SMN connectivity states: the first is
characterized by extremely strong intra-domain connectiv-
ity and extremely weak inter-domain connectivity; the sec-
ond has remarkably weak intra-domain connectivity; and the
third is compound state that combines the characteristics of
states 1 and 2. These states do not differ too much from
the states summarized in their further work in [57], [120],
with all three studies revealing different aspects concerning
post-stroke motor impairment. In [41] the authors provide
details of the distinct configuration of FC connectivity states
in stroke patients with various degrees of clinical symptoms.
Moderately affected patients, for example, have significantly
more dwell time in a weakly connected configuration, while
severely affected patients prefer to stay in the state 1. This
finding is consistent with the study [57], which included 41
AIS patients. This study also demonstrated that NIHSS signif-
icantly correlated with the fraction of the time a subject spent
in state 1 over the scan and the time a subject spent in state
1 without switching to another state (the dwell time). Among
the three studies [120] has the most AIS patients (54). In this
study, the authors pay more attention to distinguishing the link
between the SMN connectivity measure and the subgroups
of patients either with or without the motor deficit. Results
show that embedding the fraction of time and dwell time into
the initial motor impairment-based model can improve the
prediction performance (95% accuracy).

Note that this finding does not derive from multiple inde-
pendent investigations. Hence, it needs to be validated in other
stroke patient cohorts to ensure the results are reliable and
reproducible. Additionally, only the SMN has so far shown
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the preference shift in transitory brain states. If this variance is
caused by changes in the globally dynamic interplay between
distinct functional domains, this can be further investigated in
the future.

C. TEMPORAL MODULATION OF FUNCTIONAL NETWORK

REVEAL THE DYNAMIC RECONFIGURATION

Later, the multilayer temporal network was developed to
examine the post-stroke dynamic reconfiguration in the brain
function network. Multilayer temporal network analysis is
an innovative approach that models the brain’s functional
connectivity as a series of interconnected layers, each rep-
resenting different time points or temporal windows. This
method allows us to examine how brain network connections
evolve over time, and the network reconfigures itself to adapt
to external function demands, providing a more granular view
of the brain’s dynamic processes. Wu’s study [92], [93] em-
ploys this approach to investigate the temporal modulation of
functional networks in stroke patients, offering new insights
into the brain’s neural rebuilding process during recovery. Be-
sides, the dynamic reconfiguration process is closely related
to the initial degree of clinical severity. The severe patients,
for example, tend to have shown remarkably lower within-
module interaction and had a reduced overall interaction com-
pared to healthy controls [92], and tended to have reduced
recruitment and increased between-network integration [93].
In the six-month follow-up investigation, the reduced recruit-
ment can be a reliable predictor of motor function recovery
with the help of machine learning methods(highest accuracy
of 85%) [122] While Wu’s study provides significant in-
sights, it is important to consider its limitations, particularly
the sample size. The study was conducted with a relatively
small cohort of 15 stroke patients. This limited sample size
may impact the generalizability of the findings and the statis-
tical power of the conclusions.

V1. DISCUSSION

The literature search of studies in this review demonstrates
that widespread changes in connectivity can be observed in
post-stroke recovery. The exploration of alteration in func-
tional connectivity, both static and dynamic, has significantly
advanced our understanding of brain reorganization following
a stroke.

Static functional connectivity analysis has laid the foun-
dation by providing insights into the altered connectivity
patterns between different brain regions post-stroke. This
approach has revealed crucial information about the persistent
disruptions in network connectivity associated with motor
function impairments and the extent of damage sustained by
specific brain regions. In a static brain functional network,
decreased interhemispheric FC appears to be a common fea-
ture of resting-state network reorganization in stroke. This is
accompanied by reduced network efficiency and modularity.
Increased FC can also be observed, and a positive correlation
exists between the increased FC of bilateral cerebral hemi-
spheres and the degree of post-stroke functional recovery.
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However, the limitations of static analysis, which assumes
stable connectivity over time, have prompted the emergence
of dynamic functional connectivity (DFC) methods. DFC
offers a more nuanced perspective by capturing the temporal
fluctuations in connectivity patterns, reflecting the brain’s
ongoing adaptive processes during recovery. The literature
reviewed in this study underscores the potential of DFC to
provide a comprehensive understanding of the recovery pro-
cess by highlighting widespread changes in connectivity that
static measures may overlook.

Current research demonstrates that DFC can identify crit-
ical periods of heightened neuroplasticity, monitor rehabili-
tation progress more effectively, and predict long-term out-
comes with greater accuracy. These capabilities make DFC a
promising tool for tailoring personalized rehabilitation strate-
gies and enhancing the efficacy of therapeutic interventions.
Moreover, DFC facilitates a deeper investigation into the
brain’s network flexibility and resilience, offering new av-
enues for optimizing neuromodulation techniques and foster-
ing neuroplasticity.

In the following, we discuss two interesting aspects perti-
nent to SFC and DFC analysis following stroke: 1. whether
static or dynamic functional connectivity can serve as a post-
stroke recovery biomarker; 2. the methodological consider-
ations relevant to functional connectivity analysis in stroke
research.

A. FUNCTIONAL CONNECTIVITY AS A RECOVERY
BIOMARKER FOLLOWING STROKE
Accurate prediction of motor function outcomes and treat-
ment responses after stroke can benefit clinical and research
settings, promoting effective delivery of rehabilitation care
and the stratification of subjects in clinical trials. As a het-
erogeneous disease, stroke is characterized by varying lesion
sizes and locations. Therefore, the demographic and clinical
variables, such as age, sex, lesion volumes, etc., are naturally
considered potential factors contributing to the post-stroke
recovery prediction [123], [124]. Recently, there has been
increasing interest in the role of functional connectivity mea-
surements acquired from neuroimaging in predicting recov-
ery performance. Hence, in this section, we discuss if SFC and
DFC measurements can serve as a motor recovery biomarker
following a stroke from the perspective of FC application.
An appropriate first step in investigating the role of FC
measures in post-stroke motor recovery is to examine the
strength of the association between connectivity and motor
behaviour in different stroke populations. A correlation coef-
ficient of 0.75 or greater usually indicates a strong correlation.
Results from cross-sectional studies showed a moderate to
strong association between measures of static functional con-
nectivity and motor status after stroke (» = 0.58 —0.76) [32],
[56], [125]. The number of stroke patients participating in
these studies ranged from 8 to 55. The motion assessment was
measured using the upper extremity Fugl-Meyer assessment
(UL-FMA) scores, the Motricity Index, and the Chedoke-
McMaster Stroke Assessment.
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Regarding DFC analysis, the dynamic FC measure — tem-
poral variability, demonstrates a significant correlation with
the UL-FMA scores at the chronic stage after stroke, showing
the same effect as static FC analysis [21]. Another DFC
study found a negative correlation between the differences
in DFC measures in the motor execution network and FMA
scores [22], however, the result did not pass through FDR
correction. In addition, in a study with 31 AIS patients [41],
dynamic functional connectivity patterns showed significant
differences between stroke groups with varying motor status:
patients with severely impaired mobility are more likely to
have a regionally densely connected, highly segregated pat-
tern; patients with mild motor impairment take more time to
weakly connect the state with reduced segregation.

The results from the longitudinal studies also appear to
underpin FC as a potential biomarker for post-stroke motor
recovery. For example, in the longitudinal study of static
FC in stroke patients, initial baseline measures of functional
connectivity were strongly associated not only with longi-
tudinal temporal assessment scores of motion status [29],
[97], but also strongly correlated with changes in motor
function recovery over time (motor function improvement,
r=0.32—-0.79) [17], [118], [126], [127]. Dynamic analysis
of FC at the longitudinal level further demonstrated the po-
tential of FC alteration as a biological marker of rehabilitation
(between bilateral intraparietal lobule and left angular gyrus,
r = —0.68) [57].

The literature findings substantiate that FC can serve as a
reliable biomarker for post-stroke motor recovery. However,
it is advised to keep caution when assessing the causality
relationship between functional connectivity and stroke re-
covery — the sample size and statistical reliability present
challenges to using FC as a crucial factor in post-stroke
recovery. On the one hand, sample sizes collected in clinical
analyses typically range from 10 to 20 participants, with such
small sample sizes results can be particularly to sensitive
to outliers [128] and vulnerable to the effective size infla-
tion [129], thus may not accurately represent the entire group.
On the other hand, the operation of co-variables, such as age,
sex, lesion size/location, baseline motor status/measure, etc.,
vary across studies, intensifying inconsistent FC recognition
in stroke recovery. Nonetheless, we should not be too pes-
simistic. Despite these criticisms being fair, it does not change
the strong or the strong versus weak FC effects observed in
the recovery process [34]. In the future, longitudinal studies
with more samples or demonstrating the clinical benefits of
functional outcome prediction may underpin the role of FC in
post-stroke recovery.

B. FUNCTIONAL CONNECTIVITY METHODOLOGICAL
CONSIDERATIONS FOR STROKE RESEARCH

Generally, two experimental designs are used for FC analysis
in stroke research: cross-sectional and longitudinal. These
two study designs allow the investigation of different post-
stroke effects on FC. Typically, a cross-sectional study ex-
amines the FC change between stroke and healthy controls
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(between-person effects); a longitudinal study can provide
a snapshot of the FC changes in stroke patients over time
(within-person effects) [130]. Due to intensive time and re-
source requirements, the majority of studies rely on cross-
sectional designs. However, one of the defects of the cross-
sectional study is the brain lesion-induced FC difference
will be diluted by the cohort effects. For instance, since the
lifestyle backgrounds vary in participants, FC differences
between stroke patients and healthy will reflect not only the
lesion-induced neural circuit reorganization but also differ-
ences in the environment the participants live in. To track
the within-person FC changes in post-stroke recovery and to
investigate the causality of FC and neuroplasticity, a longitu-
dinal study is a potent method that can demonstrate the cross-
sectional findings from the time dimension [17], [29], [114].
In the cross-sectional studies, static and dynamic FC analyses
are present, while static accounts for the majority of longitudi-
nal studies. Recently, dynamic connectivity analysis has been
developed in multiple fields [87], [100], [120], [130], [131].
Since post-stroke recovery is time-dependent, investigating
how the neural networks interact dynamically and to what
extent dynamic connectivity patterns support motor function
recovery and change deserves further study.

The Methodology section introduced general pre-
processing methods. Although pre-processing steps involve
choices between different analysis approaches (static vs dy-
namic), they vary only mildly across FC analysis investiga-
tions in post-stroke research. To the best of our knowledge,
a systemic study of the effects of pre-processing choices has
not been conducted. This can probably be attributed to the
fact that the sample sizes for stroke patients are not large and,
therefore, cannot support examining the pre-processing steps
on the lesion-induced differences in functional connectivity.
Hence, whether those pre-processing and denoising steps
have a significant effect on the current findings could be
explored in the future.

In terms of the brain parcellation methods they use, SFC
and DFC studies have apparent preferences. Post-stroke stud-
ies with SFC analysis commonly use the atlas-based method
to parcellate the whole brain. This brain map has been gen-
erated from massive brain investigations and can provide
detailed brain information, allowing researchers to focus on
the network or regions of interest. One of the biggest benefits
of using the atlas-based method is that it provides a way to
compare and obtain fairly consistent findings across studies;
for example, lesions interrupt remote network connections,
and the interhemispheric FC decreases, etc. By contrast, stud-
ies with DFC tend to use ICA since the DFC is more sen-
sitive to noise due to increased temporal resolution. Hence,
the results of DFC approaches can vary depending on the
patient cohorts because the ICA is a data-driven approach
and may isolate components belonging to different networks.
Moreover, compared with the atlas-based method, ICA can-
not examine changes in interhemispheric connections. Hence,
how connections between hemispheres interact dynamically
at the millisecond level may require combining SFC and DFC
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results or new intervention approaches.

CONCLUSION

fMRI-based post-stroke functional connectivity analysis for
post-stroke motor dysfunction patients has two branches:
static functional connectivity (SFC) and dynamic functional
connectivity (DFC). While SFC assumes that the FC/FNC
is stationary during the fMRI scan, DFC maintains that the
FC/FNC fluctuates even over short periods of time and has
specific coupling patterns. A great many SFC and DFC anal-
ysis methods have been developed and successfully applied to
investigate the alteration in functional interactions or commu-
nication which are behind post-stroke motor function deficit
and recovery. In this context, this review summarized the
current advances in SFC and DFC approaches and the latest
findings for their application on post-stroke motor function
research. The studies included in this review demonstrate that
SFC is the predominant post-stroke functional connectivity
analysis method in the last five fears. The results from SFC
show that there is a reduction in FC between motor regions
after a stroke, and that a rise in FC is highly associated with
functional recovery. Meanwhile, DFC is developing rapidly.
DFC’s ability to provide a nuanced, time-sensitive under-
standing of brain connectivity changes, enabling the applica-
tion of DFC methods has potential in post-stroke motor func-
tion impairment and recovery. With more DFC methods cre-
ated and utilized to investigate the abnormal motor FC/FNC
dynamics, DFC is expected to have far-reaching effects in
terms of neural reorganization underlying stroke recovery and
underpin understanding of the recovery mechanism.

Based on consideration of previous studies, recommenda-
tions from this review for future studies are:

1) Both SFC and DFC methodology needs to be validated
on large cohorts to improve the reliability and robust-
ness of their statistical results.

2) As a potent method for examining the stroke lesion-
effect on alteration of FC/FNC dynamics within-
person, DFC based longitudinal post-stroke investiga-
tions should be greatly encouraged in the future.

3) This variability in connectivity is thought to be closely
linked to the brain’s intrinsic neural timescales (INT),
which represent the time windows over which neural
populations integrate information [132]—[135]. The in-
terplay between DFC and INT could provide insight
into how the brain’s functional architecture continu-
ously adapts, allowing for the flexible coordination
of neural processes that underlie loss functions after
stroke.

4) The quantitative relationship between FC/FCN alter-
ation and motor function improvement should be thor-
oughly investigated, particularly for dynamic FC/FNC
alteration.

5) The post-stroke motor function research should not be
limited to brain motor function areas. The interplay
effect between the motor network and other functional
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networks, such as the cognitive network, should be
considered.
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