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Abstract

Background: Cochlear implants (CIs) have revolutionized hearing restoration for individuals with severe or profound hearing loss.
However, a substantial and unexplained variability persists in CI outcomes, even when considering subject-specific factors such as
age and the duration of deafness. In this study, we explore the utility of resting-state functional near-infrared spectroscopy (fNIRS)
recordings to predict speech understanding outcomes before and after CI implantation. Our hypothesis revolves around resting-state
functional connectivity (FC) as a reflection of brain plasticity post-hearing loss and implantation. Specifically, we hypothesized
that the average clustering coefficient in resting FC networks can capture this variation among CI users.

Methods: Twenty-two cochlear implant candidates participated in this study. Resting-state fNIRS data were collected pre-
implantation and at one month, three months, and one year post-implantation. Speech understanding performance was assessed
using CNC words in quiet and BKB sentences in noise one year post-implantation. Resting-state functional connectivity networks
were constructed using regularized partial correlation, and the average clustering coefficient was measured in the signed weighted
networks as a predictive measure for implantation outcomes.

Results: Our findings demonstrate a significant correlation between the average clustering coefficient in resting-state functional
networks and speech understanding outcomes. Importantly, our analysis reveals that this measure provides unique information not
accounted for by subject-specific factors such as age and duration of deafness.

Conclusion: This approach utilizes an easily deployable resting-state functional brain imaging metric to predict speech under-
standing outcomes in implant recipients. The results indicate that the average clustering coefficient, both pre and post implantation,
correlates with speech understanding outcomes.
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1. Introduction

Cochlear implants (CIs) have been instrumental in restor-
ing hearing for individuals with severe to profound hearing loss.
However, a significant proportion of CI users experience subop-
timal outcomes or limited benefit from the implant [1]. While
case-history factors such as age, duration of deafness, resid-
ual hearing, and previous experience with hearing aids have
been investigated to explain this variability, they account for
only a fraction of the variance in implantation outcomes [2; 3].
As a result, researchers are increasingly seeking more depend-
able predictors of speech understanding outcomes, particularly
by examining changes in central cortical language networks.
These networks are thought to be more closely linked to CI
performance than the neural responses observed at lower lev-
els of the auditory system, such as the brainstem or auditory
nerves [4; 5; 6; 7].

Numerous studies have indicated neuroplastic changes in
the brain following hearing loss and cochlear implantation, which
can be broadly categorized as cross-modal and adaptive struc-
tural changes [6]. Sensory deprivation in one modality is known
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to lead to increased activity in brain regions associated with the
remaining senses, resulting in the colonization of the primary
cortical area by other modalities [8; 9]. Individuals with severe
hearing loss often rely on intact senses, such as vision, to com-
pensate for their hearing impairment. For instance, the auditory
cortex in these individuals becomes more receptive to visual
stimulation, enabling better visual localization and motion de-
tection [10]. Some researchers argue that these cross-modal
changes and the recruitment of the auditory cortex by other
modalities may have maladaptive effects following cochlear im-
plantation [9; 11]. For example, Doucet et al.[12] compared
evoked potentials in response to visual stimuli of concentric
gratings and found broader, anteriorly distributed cortical ac-
tivations in patients with poorer speech understanding perfor-
mance. Conversely, other studies suggest that these cross-modal
changes in the auditory cortex may actually enhance CI users’
performance. They propose that the enhanced cross-modal plas-
ticity in the auditory cortex improves visual speech understand-
ing, leading to better lipreading abilities and speech understand-
ing performance [13; 14; 7]. Anderson et al. [14] investigated
cross-modal activation of the auditory cortex by visual speech
before and 6 months after cochlear implantation, also based on
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Table 1: Demographic Information of Participants

Participant Gender Implant Ear Deafness Duration(Year) Implant Ear PTA* Ear with Hearing Loss

Sub-1 M L 2 N.R. L
Sub-2 F R 10 100 L & R
Sub-3 M L 50 120 L & R
Sub-4 F R 20 112 L & R
Sub-5 F L 20 87 L & R
Sub-6 M L 5 82 L
Sub-7 F L 5 88 L & R
Sub-8 F R 1 57 L & R
Sub-9 M R 20 92 L & R
Sub-10 M R 12 107 L & R
Sub-11 M L 0.5 78 L
Sub-12 F L 18 70 L & R
Sub-13 M L 0.25 105 L & R
Sub-14 M L 20 114 L & R
Sub-15 M L 0.6 83 L & R
Sub-16 F L 0.75 90 L
Sub-17 F L 4 98 L & R
Sub-18 F L 46 100 L & R
Sub-19 F L 2 95 L & R
Sub-20 M R 13 103 L & R
Sub-21 M L 1.25 120 L
Sub-22 F L 20 120 L & R

*PTA (dBHL) = pure-tone average of .5, 1, and 2 kHz hearing thresholds

fNIRS recordings. Their findings demonstrated a positive cor-
relation between increased auditory cortex activation and CI re-
cipients’ speech understanding ability 6 months after implan-
tation. However, drawing definitive conclusions on the adap-
tive or maladaptive effects of cross-modal changes is challeng-
ing due to the wide variability in visual and audio stimuli em-
ployed in these studies. Neuroimaging evidence reveals that
different types of speech stimuli elicit distinct brain activation
patterns [15], including separate words and syllables, contin-
uous speech for lingual visual and audio stimuli[16; 14; 17]
and speech-like noise or checkerboards as non-lingual or visual
stimuli [18; 7], each potentially leading to different activity pat-
terns in the brain.

In addition to cross-modal changes, hearing loss is asso-
ciated with significant adaptive structural changes in brain re-
gions supporting auditory, language, and cognitive processing.
These changes involve gray matter reduction in the inferior,
middle, and superior temporal lobes, as well as the frontal and
lingual gyrus. These structural alterations in the brain due to
hearing loss affect auditory abilities and are linked to other cog-
nitive dysfunctions, such as deficits in language function and
semantic memory [19; 20; 21]. Furthermore, these structural
changes can impact hearing abilities following cochlear implan-
tation [22; 23]. Given that the brain’s structural connectivity
network forms the basis for functional connectivity (FC) [24;
25; 26], assessing resting-state FC (also known as the intrinsic
functional network) provides a means to evaluate these subtle
changes in the brain network. Resting-state FC refers to the
statistical dependence between activities in different brain re-
gions (nodes in graph theory) in the absence of explicit stimuli
or tasks. This approach has gained prominence in studying var-
ious brain disorders, including autism [27], Alzheimer’s [28],
depression [29], and schizophrenia [30], as well as in inves-

tigating brain dynamics during learning [31] and aging [32].
The objective of this study was to identify a reliable indicator
of cochlear implantation outcomes for individuals with post-
lingual deafness based on the resting-state functional networks
of the brain.

This study aims to investigate the potential of resting-state
FC as a reliable indicator of speech understanding outcomes in
post-lingually deaf CI users. We propose that variations in the
brain networks of these individuals can be reflected by the av-
erage clustering coefficient in the resting-state functional net-
work, which quantifies the tendency of neighboring nodes to
cluster together in graph theory [33]. To our knowledge, this
is the first study to assess resting-state FC for evaluating brain
plasticity in CI recipients and propose an indicator of speech
understanding outcomes. By focusing on resting-state FC, our
approach offers a streamlined, short, and straightforward as-
sessment, avoiding the complexities associated with task-based
experimental design and result interpretation. Furthermore, we
utilized functional near-infrared spectroscopy (fNIRS) for brain
imaging, a non-invasive and cost-effective optical imaging tech-
nology. Importantly, the implant device does not interfere with
the fNIRS measurements [17].

2. Material and Methods

2.1. Participants
Twenty-seven adult CI recipients participated in the study.

All participants were post-lingually deaf and implanted with
Nucleus brand devices. Four of them did not complete the
final test at 12 months. Besides, one subject did not get any
benefit from the implantation after one year. So, they were re-
moved from the study, and the results reported here are based
on the data acquired from the remaining 22 subjects (mean
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Figure 1: The montage we used for resting-state fNIRS recording. It included 52 long channels (green) and two short channels (yellow). The montage covered the
right and left auditory cortices and the left visual cortex.

age = 58.2±19.75, Table 1 provides the de-identified partici-
pant information.). The Human Research Ethics Committee of
the Royal Victorian Eye and Ear Hospital approved this study
(ethics approval 16.1262H), and all participants provided writ-
ten informed consent.

Before implantation, the cognitive skills of our participants
were assessed by doing trial-making tests A and B as described
in [34], which were drawing lines between ascending numbers
(test A) or drawing lines between numbers and letters in ascend-
ing order alternatively (test B). The participants were asked to
complete the tasks as quickly and accurately as possible with-
out removing the pencil from the paper. All of them had normal
performance and passed the test criteria.

This study aimed to introduce predictors for speech under-
standing outcomes of CI users after one year. Therefore, the
speech understanding outcomes were measured at 12 months
post-implant. Each participant underwent two audio-only speech
tests to measure their speech understanding performance. Di-
rect audio inputs were applied to remove the effect of any resid-
ual hearing on the speech perception measurements with the
device. The first test included 50 consonant-nucleus-consonant
(CNC) words in quiet [35]. For this test, the overall scores
were presented in percentages for both correct phonemes and
words. The second test comprised 16 Bamford-Kowal-Bench
Sentence (BKB) sentences in a multi-talker bubble noise envi-
ronment [36]. The test’s score was determined based on the
signal-to-noise ratio (SNR) needed to achieve 50% accuracy in
word recognition. This SNR was dynamically adjusted during
the test based on the participant’s response accuracy. If the ac-
curacy rate exceeded 50%, the SNR was reduced by one unit,
while it was increased by one unit if the accuracy rate fell below
50%. This process was repeated ten times, and the SNR val-
ues were averaged across the turning points of these iterations.
Therefore, lower scores, indicating a lower SNR for achieving
50% word recognition, reflected better performance on the test.
The SNR adjustment procedure for the BKB sentences began at
20 dB SNR. In both speech understanding tests, the speech was
presented at a level of 65 dBA in the sound field, and the noise
level was adapted to manipulate the SNR.

2.2. Data Acquisition

We recorded 5-minute resting-state fNIRS at four time points.
The first recording was before implantation; the rest were at

one, three, and 12 months post-switch on. The measurements
were carried out using the NIRscout system (manufactured by
NIRx company). The system uses LEDs with dual near-infrared
wavelengths of 760 and 850 nm. Our montage included 16
sources and 16 detectors mounted on a 10-20 system cap which
together built 54 channels. Two channels were short (5 mm dis-
tance between source and detector pairs) and used in the pre-
processing steps to remove systemic artifacts from long chan-
nels [37]. Figure 1 shows the channel placements in the mon-
tage. Our regions of interest included the left and right auditory
cortices and the left visual cortex.

2.3. Data Preprocessing

We performed data preprocessing using the NIRS toolbox [38].
First, the raw recordings were converted to optical density. We
evaluated the quality of channels using the scalp coupling index
(SCI) [39]. Channels with SCI lower than 0.5 were indicated as
bad ones and removed from the recordings. If the number of
bad channels in each recording exceeded 26, the recording was
removed from further analysis. Then, we applied the temporal
derivative distribution repair (TDDR) method on the remained
channels to improve signal quality by removing motion arti-
facts [40]. Afterward, the optical signals were converted to oxy-
and de-oxyhemoglobin (HbO and HbR) based on the modified
Beer-Lambert Law. Since long channels capture both cerebral
activities and systemic artifacts, such as heartbeats, respiration,
and Myer waves, we took two successive steps to mitigate the
effect of these systemic artifacts and other noises. We used short
channels for short-channel correction and applied a band-pass
filter with a 0.02-0.40 Hz pass band. Short-channel correction
regressed out short-channel signals that include systemic arti-
facts and no cerebral component [41]. The band-pass filter was
applied to remove low-frequency artifacts like Myer waves or
baseline drifts and high-frequency artifacts like heartbeats.

2.4. Functional Connectivity Matrix and Graph Construction

The connectivity analysis was conducted on data in the HbO
format, as previous studies have demonstrated that it produces
more robust coherence patterns and connectivity compared to
HbR [42]. We measured FC between pairs of channels using
regularized partial correlation. To illustrate constructing the
functional brain network based on regularized partial correla-
tion, suppose one performs multiple regression for each signal
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λ=3.12E-4

Standard deviation: 0.18 →0.15Standard deviation: 0.18 →0.15
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Figure 2: Regularization effect on the functional connectivity weights for a sample subject (subject seven, session three). Regularization applies extra penalties on
network complexity to eliminate spurious connections, resulting in weight distribution shrinkage.

based on other signals as regressors. In that case, the regression
slope for each regressor is proportional to the partial correlation
coefficient between the signal and the regressor.

Y = X · β + ε (1)

where X is an (n×p) matrix and includes p controlling re-
gressors with n samples each. β is a (p×1) vector of regression
slopes for each controlling variable. ε is a vector of n elements
showing the error terms in the linear estimations of the Y vari-
able. The ordinary least squares method to solve the equation
leads to the highest possible dimension for β that is p. How-
ever, partial correlation is usually calculated using regulariza-
tion techniques. Regularization applies extra penalties for net-
work complexity. Doing so removes links between nodes (also
known as edges in graph theory) that are likely to be spurious
and help effectively to retrieve actual network structure [43; 26].

This study used regularized partial correlation based on L2-
norm Ridge Regression (aka Tikhonov) to estimate FC net-
works [44]. The approach adds a term based on the squared
sum of β values to the cost function:

fcost(β, λ) =
n∑

i=1

(yi −

p∑
j=1

xi, j.β)2 − λ

p∑
j=1

β2
j (2)

λ parameter that ranges from 0 to 1 penalizes the β weights
and control density in the FC graph to get rid of spurious links
in the network. Higher values result in further shrinkage of the
edge weights and sparser networks.

In this study, we used the leave-one-out cross-validation
method to optimize λ for each speech understanding test [45].
In this type of iterative method, one recording is left for test-
ing each time, and others are used for training. The optimum λ
value for each speech understanding test was chosen when the
estimation error was minimum. Although leave-one-out is com-
putationally expensive for large networks (e.g., in most fMRI
studies), here, the cost was not a concern since our networks
were relatively small (52 nodes).

2.5. Clustering Coefficient
In this study, the average clustering coefficients in the resting-

state networks were considered features that represent CI users’
brain plasticity. We constructed signed weighted FC matrices

based on partial correlation to measure connectivity between
channels. Since correlation estimates for two signals are typi-
cally based on relatively short recordings, small amplitude cor-
relations exist in the network as unstable estimates of corre-
lations between nodes. Since they are distributed equally be-
tween positive and negative weights, their effects are expected
to be canceled out when averaging node clustering coefficients
in the network. Therefore, signed networks are more resistant
to spurious connectetions than unsigned networks [46]. In the
FC networks (with weights from -1 to 1), the average cluster-
ing coefficient represented the overall connection density in the
areas covered by the montage. We measured the clustering co-
efficient of node i in the signed weighted networks as,

Ĉi =

∑
j,q(ws( j, i) · ws(i, q) · ws( j, q))∑

j,q |ws( j, i) · ws(i, q)|
(3)

ws(i, q) is the edge weight connecting node a to node b.
(i, j, q)s include all triangles with i as a vertex. The numera-
tor is the sum of edge products of all triangles that include node
i and the denominator equals the sum of absolute indirect traces
between pairs of nodes that pass through node i [47; 46].

3. Results

3.1. Construction of Brain Functional Networks Based on Reg-
ularized Partial Correlation

We calculated the resting-state functional connectivity net-
works of the fNIRS recordings using regularized partial cor-
relation [48]. Regularization applies extra penalties on net-
work complexity to eliminate spurious connections, resulting
in the shrinkage of the networks’ weight distributions. Figure 2
presents the effect of regularization on the functional connectiv-
ity matrix and weight distribution of a sample subject (subject
seven, session three). As the figure shows, regularization has
decreased the overall weight amplitudes and made the network
sparser than the unregularized network by trying to remove spu-
rious connections. Table 2 shows optimum regularization val-
ues (λ) for different tests across the sessions. The small (or
zero) optimal λ values show that the regularization step had
little (or no effect) on the complexity of networks in different
sessions.
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Table 2: Partial Correlation Regularization Parameter (λ) Values for Each Test
Across the Sessions

Speech Tests
CNC words CNC phonemes BKB STR

Session 1 0 0 1.80E-5
Session 2 0 0 0
Session 3 1.32E-4 0 3.12E-4
Session 4 3.80E-5 1.80E-5 9.40E-5

3.2. Clustering Coefficient at Resting State Correlates with Speech
Understanding Scores at 12 Months Post-Implantation

We investigated the association between the average cluster-
ing coefficients in the signed weighted networks derived from
the fourth recording session (at 12 months) and the respective
speech understanding outcomes of cochlear implant recipients
after one year. Our analysis unveiled a statistically significant
correlation between the average clustering coefficients and all
categories of speech understanding scores at the 12-month as-
sessment: including CNC words and phonemes in quiet, as well
as BKB sentences in noise (Figure 3).

To ensure the robustness of our findings, we generated 30
null networks for each FC network following the method de-
scribed by [49]. These null models were designed to serve as
control graphs, maintaining connection weight distribution and
node strength that closely resembled those of the primary net-
works. Figure 4 compares the p-values of the correlation be-
tween speech scores and the average clustering coefficient for
the primary and null graphs. The figure shows that the correla-
tion between the average clustering coefficient and test scores
for the null models reduced considerably (higher p-values for
null models).

3.3. Average Clustering Coefficient in Resting-State Functional
Networks Predict Implantation Outcomes

We extended our investigation to assess the correlation be-
tween the average clustering coefficients within the fNIRS resting-
state networks recorded before implantation, as well as at one
month and three months post-implantation, and the correspond-
ing speech scores obtained at the 12-month post-implantation
assessment. This analysis was conducted to assess the predic-
tive capabilities of the average clustering coefficient in the con-
text of cochlear implantation outcomes. Figure 5 summarizes
the correlation values (R) between average clustering coeffi-
cients in the resting-state networks of each session with speech
understanding scores. As the results indicated, in many cases,
the average clustering coefficients of the brain networks at dif-
ferent time points before one year were highly correlated with
behavioral CI outcomes at 12 months post-implantation.

3.4. Average Clustering Coefficient Reveals Brain Plasticity

We conducted an analysis to investigate alterations in the
average clustering coefficient within the brain networks of our
subjects across various sessions. The findings underscored a
significant increase in the average clustering coefficients during
the three and twelve months post-implantation when compared
to the baseline values recorded pre-implantation. However, no

statistically significant changes were observed in the average
clustering coefficient one month after the surgery (Figure 6).

3.5. Average Clustering Coefficient Convey Unique Informa-
tion Beyond Age and Deafness Duration

Age and deafness duration are critical subject history fac-
tors known to impact cochlear implantation outcomes. Typi-
cally, older individuals and those with a longer duration of deaf-
ness tend to exhibit poorer speech outcomes. As illustrated in
Figure 7, the bar chart displays the correlation of these two fac-
tors with speech scores. Notably, the correlation of age with
speech scores, specifically CNC words and phonemes, is rela-
tively high and comparable to the correlation between the aver-
age clustering coefficient and these scores.

To comprehensively evaluate the individual contributions
of these factors, we conducted multivariable linear regression
analyses for each session. Before conducting these tests, we
carefully examined multicollinearity among the variables. De-
tecting multicollinearity is crucial because, while it does not
reduce the explanatory power of the model, it can diminish the
statistical significance of the independent variables. To evalu-
ate multicollinearity, we calculated the variance inflation factor
(VIF), which measures the intercorrelation among independent
variables in a multiple regression model[50]. Importantly, the
VIF values for all variables in the multivariable regression tasks
were below 2, with a maximum VIF of 1.75. These low VIF
values indicate that multicollinearity is not a significant con-
cern in our analysis.

Figure 8 presents a comparison of the correlation coeffi-
cients between age, deafness duration, and average clustering
coefficient in four fNIRS recordings, considering them as inde-
pendent variables, and speech understanding scores as depen-
dent variables. The black squares in the bar plot denote the
improvement in correlations compared to using only the aver-
age clustering coefficient as a predictive factor (Figure 5). Ta-
ble 3 displays the p-values from the F-statistic test, indicating
the significance level of a variable when considering the other
terms in the model. Variables that remain significantly impor-
tant in the model, even when accounting for other variables, are
highlighted in red in the table.

3.6. Channel Density Influences the Correlation Between Av-
erage Clustering Coefficient and Implantation Outcomes

In our study, the computation of partial correlation between
channel pairs takes into account the influence of other chan-
nels within the montage. This consideration is vital as it can
impact the resulting correlation values and, consequently, the
average clustering coefficient, which we utilize as a predictive
measure for patients’ speech understanding performance fol-
lowing cochlear implantation. To delve deeper into this mat-
ter, we conducted experiments involving the removal of specific
numbers of channels from the montage to assess the influence
of channel density on our results. In each case, we randomly
selected channels for removal from the setup and repeated this
process 50 times for each number of omitted channels. Across
different numbers of omitted channels, we calculated the aver-
age correlation between the average clustering coefficient and
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Figure 3: Average clustering coefficient at 12 months post-implantation correlates significantly with speech performance outcomes.

Figure 4: Comparing the significance of the correlations between the speech
scores and the average clustering coefficient in the primary (green circles) and
null graphs (blue dots). The figure shows that the correlation dropped for null
models considerably.

speech scores. Significantly, our results consistently indicate a
trend: the reduction in channel density substantially decreased
the accuracy of our proposed method across all sessions (refer
to Figure 9 for an example, illustrating our findings based on
the second fNIRS recording session).

4. Discussion

The objective of the present study was to evaluate resting-
state cortical activity using fNIRS and to investigate a reliable
indicator of cochlear implantation outcomes. Previous stud-
ies on functional connectivity (FC) often centered around task-
based experiments. However, there has been a shift towards
resting-state FC studies, primarily for investigating brain ab-
normalities, group differences, and providing diagnostic and
prognostic biomarkers. This shift is grounded in the fact that
resting-state FC, also known as intrinsic brain FC, underpins
task-based FC and operates across various brain states. The
inconsistency in results from some task-based studies can be
attributed to the diversity of tasks used in testing their hypothe-
ses [7]. Therefore, using resting-state recordings simplifies the
study of brain networks by eliminating the need for numerous

First fNIRS                Second fNIRS                Third fNIRS               Fourth fNIRS

Figure 5: Correlation (R) between speech scores and their predictions based
on the linear regressors in each fNIRS recording session. The error bars show
the 95% confidence interval for 100 bootstrapped samples. The star marks
(*), (**), and (***) indicate p-values smaller than the significance levels of
α = 0.05, 0.01, and α = 0.001, respectively.

task scenarios [51; 52]. Accordingly, this study aimed to pro-
pose, for the first time in the literature, a simple and reliable
biomarker for speech understanding performance of CI users
based on resting-state brain FC.

In this study, we used partial correlation to measure FC be-
tween pairs of fNIRS signals and create signed weighted func-
tional networks. Partial correlation is effective in removing spu-
rious connections and mitigating the effects of systemic noise,
which is a significant concern in many fNIRS studies. Studies
have shown that the FC networks created by regularized partial
correlation correlate better with the underlying structural neural
network compared to other connectivity measures such as Pear-
son correlation [26]. However, establishing the precise relation-
ship between FC networks and structural networks, particularly
for signed networks, is not straightforward, as most methods
are developed for unsigned networks and do not consider the
polarity of connections in the FC network [24; 53; 26].

The proposed measure in this study to interpret the variabil-
ity in cochlear implantation outcomes was the average resting-
state clustering coefficient in the language brain areas covered
by our montage, including the right and left auditory cortices
and the left visual cortex. The results demonstrated that this
measure effectively explained the variation in cochlear implan-
tation outcomes and exhibited high reproducibility across times
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Table 3: Significance level of a variable considering other terms in the multi-regression model
First fNIRS Second fNIRS Third fNIRS Fourth fNISR

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3 Score 1 Score 2 Score 3 Score 1 Score 2 Score 3
Clustering Coef. 0.118 0.020 0.241 0.029 0.028 0.029 0.341 0.084 0.207 0.002 0.002 0.032

Age 0.012 0.021 0.372 0.044 0.085 0.903 0.089 0.364 0.699 0.033 0.065 0.736
Deafness Dur. 0.719 0.907 0.864 0.613 0.564 0.937 0.260 0.120 0.518 0.208 0.228 0.334

N.S.

**

***

Figure 6: The distribution of the average clustering coefficients of our subjects
in different sessions. The changes in average clustering coefficients were sig-
nificant at three and 12 months but not in one month post-implantation. (N.S.
stands for not significant.)

pre- and post-implantation. Therefore, it can provide special-
ists with valuable insights before implantation to determine the
potential benefits for the patient, guide adjustments to the de-
vice after implantation, or prescribe rehabilitation strategies to
improve hearing performance.

The clustering coefficient of a node in a graph indicates how
well its neighbors are connected or correlated with each other
in a functional network. Our results showed a positive cor-
relation between the average clustering coefficient and speech
outcomes, indicating that subjects with higher average cluster-
ing coefficients in the areas covered by the montage had bet-
ter speech understanding performances. These regions of in-
terest included the left and right auditory cortices and the left
visual cortex. Multiple studies have shown that hearing loss
leads to brain atrophy in these brain areas involved in the lan-
guage network, resulting in a reduction in neurons or neural
connections [19; 20; 21]. The average clustering coefficient
in the resting-state functional network can be interpreted as a
measure of neural connection densities on a large scale since
a high micro-scale correlation between resting-state functional
and structural networks has been observed in many studies [24;
54]. Our study has shown that patients with higher average
clustering coefficients (presumably interpreted as less atrophy)
perform better with the CI.

The average clustering coefficient at different time points re-
vealed gradual plasticity in the FC network after the CI switch-
on (Figure 6). The results indicated that the average clustering
coefficient increased after implantation due to the new stimuli

Age                              Deafness Duration                

Figure 7: The correlation between age and deafness duration with speech per-
formance outcomes.

provided by the device, aligning with the process of auditory
recovery [4; 55]. Our findings showed that these changes were
gradual and statistically significant after three months but in-
significant for the first recordings taken one month after implan-
tation. This pattern is in line with earlier research, which sug-
gests that in the initial months following implantation, hearing
remains suboptimal, and the sounds perceived are often chal-
lenging to decipher[56].

We also conducted a comparative analysis to assess the pre-
dictive performance of the average clustering coefficient in resting-
state networks in relation to subject-specific historical factors
such as age and deafness duration concerning speech outcomes.
Deafness duration, as reported by subjects, is inherently subjec-
tive, leading to varying interpretations among different individ-
uals. Consequently, it emerges as a less reliable predictor, and
its correlation with performance outcomes in our dataset was
notably weaker compared to the correlation with age. Our find-
ings reveal that the inclusion of our proposed measure alongside
subject-specific factors substantially enhances the accuracy of
outcome estimation across all time steps, as illustrated in Fig-
ure 8. Moreover, the results highlight that our proposed mea-
sure consistently accounts for variability in speech understand-
ing outcomes not elucidated by recipient history factors. This
is especially notable during the second recording, one month
post-implantation, a crucial period for clinicians fine-tuning the
device (Table 3). This highlights the unique information about
brain plasticity conveyed by our measure, information not cap-
tured by age or deafness duration alone.

The current study focused on the auditory and specific parts
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First fNIRS       Second fNIRS       Third fNIRS      Fourth fNIRS

Figure 8: Correlations between age, deafness duration, and average clustering
coefficient in four fNIRS recordings as independent variables, and speech un-
derstanding scores as dependent variables. Black squares indicate enhanced
correlations compared to using the average clustering coefficient alone as a pre-
dictive factor.

Figure 9: Decreasing the channel density by randomly removing specific num-
bers of channels from the setup results in a reduced algorithm precision, as
indicated by the correlation between the average clustering coefficient and dif-
ferent speech scores. We conducted 50 iterations for each number of removed
channels for the fourth session.

of the left visual cortex, limiting the assessment of brain plas-
ticity. Including interconnected regions like motor and broader
visual areas would provide a more comprehensive evaluation,
capturing adaptive and cross-modal changes. Another metric,
brain modularity, could also be explored. Modularity, repre-
senting densely connected subnetworks with sparse connections
in real-life networks, underpins brain segregation [33; 57]. Stud-
ies suggest that sensory cortices, including hearing-related ar-
eas, experience atrophy and are influenced by remaining sen-
sory areas like visual and motor regions [8; 58]. With hearing
loss, the auditory cortex’s modularity may decrease due to re-
duced connections within the auditory module and increased
connections with other areas, reflecting cross-modal plastic-
ity. Post-implantation, the brain’s capacity to regain modularity
might correlate with enhanced device performance.

The arrangement of channels in the montage plays a piv-
otal role in partial correlation calculations and, consequently,

influences the average clustering coefficient utilized for post-
implantation speech understanding predictions. Our experiments,
involving random channel removals, clearly demonstrated that
decreased channel density resulted in diminished algorithm pre-
cision. This underscores the critical significance of channel
density in algorithm performance and suggests avenues for fu-
ture research to optimize channel density, potentially enhancing
the measure’s accuracy.

5. Conclusion and Future Works

This study aimed to interpret the significant variations in
cochlear implantation outcomes among post-lingually deaf adults
using resting-state functional connectivity. Our central goal was
to devise an indicator illuminating the adaptive changes in the
brain that occur after hearing loss and cochlear implantation.
We harnessed fNIRS technology for brain imaging, with the ad-
vantage of not interfering with cochlear implant devices. Our
chosen metric was the average clustering coefficient, calculated
within specific brain regions: the left and right auditory cortices
and the left visual cortex.

Our results consistently unveiled a correlation between the
pre- and one-year post-implantation average clustering coeffi-
cient and speech understanding outcomes. Moreover, we ob-
served a notable increase in the average clustering coefficient
within the initial three months post-implantation, suggesting
brain plasticity and the potential for auditory recovery. Cru-
cially, our metric provided unique insights beyond conventional
factors like age and deafness duration, significantly enhancing
prediction accuracy when combined with these variables.

To deepen our comprehension of brain plasticity, future re-
search might consider broadening the scope to encompass addi-
tional cortical regions. Including areas such as the motor cortex
and other sections of the visual cortex, which undergo cross-
modal adaptations as the auditory cortex post-hearing loss, could
unveil a more comprehensive spectrum of brain plasticity. Thus,
future studies should explore graph features to capture these di-
verse aspects effectively.

Furthermore, our study highlighted the pivotal role of chan-
nel density within the imaging setup in predicting cochlear im-
plant outcomes. Consequently, we advocate for channel density
to become a central consideration in future investigations, as it
significantly influences the prediction accuracy of the proposed
method.
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