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Dynamic Reconfiguration of Brain Functional
Network in Stroke

Kaichao Wu, Beth Jelfs, Katrina Neville, Wenzhen He* and Qiang Fang*

Abstract—The brain continually reorganizes its func-
tional network to adapt to post-stroke functional impair-
ments. Previous studies using static modularity analysis
have presented global-level behavior patterns of this net-
work reorganization. However, it is far from understood
how the brain reconfigures its functional network dynam-
ically following a stroke. This study collected resting-state
functional MRI data from 15 stroke patients, with mild (n
= 6) and severe (n = 9) two subgroups based on their
clinical symptoms. Additionally, 15 age-matched healthy
subjects were considered as controls. By applying a mul-
tilayer network method, a dynamic modular structure was
recoghized based on a time-resolved function network.
Then dynamic network measurements (recruitment, inte-
gration, and flexibility) were calculated to characterize the
dynamic reconfiguration of post-stroke brain functional
networks, hence, to reveal the neural functional rebuilding
process. It was found from this investigation that severe
patients tended to have reduced recruitment and increased
between-network integration, while mild patients exhibited
low network flexibility and less network integration. It’s also
noted that this severity-dependent alteration in network
interaction was not able to be revealed by previous studies
using static methods. Clinically, the obtained knowledge
of the diverse patterns of dynamic adjustment in brain
functional networks observed from the brain signal could
help understand the underlying mechanism of the motor,
speech, and cognitive functional impairments caused by
stroke attacks. The proposed method not only could be
used to evaluate patients’ current brain status but also has
the potential to provide insights into prognosis analysis
and prediction.

Index Terms— Stroke; fMRI; Functional network; Dynam-
ics;

[. INTRODUCTION

TROKE is a common neurological disorder that can lead
to significant impairment of cognitive and motor func-
tions. However, due to brain plasticity, the stroke brain can ad-
just its network architecture to adapt to structural damage and
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compensate for the lost functions [1], [2]. The brain functions
are fulfilled by a set of functionally specialized modules, i.e.,
distributed brain regions that interact and cooperate with each
other, either within modules or between modules, in response
to the functional demands of the external environment [3], [4].
Therefore, the altered functional network of the stroke brain
implies that it is reconfiguring its modular structure to support
the post-stroke plasticity [5].

In this regard, functional neuroimaging data, particularly
resting-state functional MRI, have contributed enormously
to understanding the reorganization mechanisms of network
modules underpinning post-stroke plasticity and brain adapt-
ability [6]-[8]. A frequent observation is the reduction of
modularity between sub-networks after a stroke [9]-[11]. This
reduction in modularity reflects the decreased segregation
between different functional domains and integration within
domains; to some extent explaining the post-stroke clinical
deficits [11], [12]. The reduced modularity usually lasts a
few weeks to a month after the stroke, following which the
modular brain network gradually recovers, in parallel with the
functional improvement (e.g., improvements language [9] and
attention [13]).

Nevertheless, of note that these findings typically rest on a
static representation or a single brain network built from an
entire resting-state functional MRI scan. While a static con-
struction is valuable and useful, a growing body of literature
on time-varying networks suggests that the temporal dynamics
of the modular brain should be assessed [14], [15]. In addition,
the time dependence of the modularity recovery implies that
the dynamic reconfiguration of the brain networks could be
the root source of decreased or increased static modularity,
thus further emphasizing the need for evaluation of post-
stroke module dynamics. Furthermore, the brain’s dynamic
reconfiguration has been proven to be a promising avenue
for creating novel biomarkers of diseases, such as attention-
deficit/hyperactivity disorder [16] schizophrenia [17], temporal
lobe epilepsy [18] and depression [19]. However, if and how
the brain network dynamically reconfigures itself following
a focal stroke, particularly under different levels of clinical
severity, remains not fully understood.

Therefore, this study investigated the dynamic reconfigura-
tion of functional brain networks in stroke patients with differ-
ent degrees of clinical symptoms. Specifically, the fMRI data
from 15 stroke subjects with two degrees of severity (mild:
6 and severe: 9) and 15 age-matched healthy controls were
analysed with a multilayer network model. We hypothesize
that the post-stroke brain dynamic reconfigures its functional
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Fig. 1. Spatial mapping of predefined 32 ROIs and 8 corresponding networks for multilayer dynamic analysis. Default mode network (DMN): the

medial prefrontal cortex (MPFC), precuneus cortex (PCC), bilateral lateral parietal (LP); sensorimotor network (SMN): superior, bilateral lateral;
visual network (VIS): medial, occipital, bilateral lateral; salience network (SAN): anterior cingulate cortex (ACC), bilateral anterior insula (Al), rostral
prefrontal cortex (RPFC), and supramarginal gyrus (SMG); dorsal attention network (DAN): bilateral frontal eye field (FEF) and intraparietal sulcus
(IPS); fronto-parietal network (FPN): the bilateral lateral prefrontal cortex (LPFC) and posterior parietal cortex (PPC); language network (LN):
bilateral inferior frontal gyrus (IFG) and posterior superior temporal gyrus (pSTG); and cerebellar network (CE): anterior, posterior.

network according to clinical severity. The hypothesis is
twofold: first, the brain functional network of stroke patients
undergoes dynamic changes. If these changes do happen,
they can be evidenced by highly significant alterations in
the measurements that characterize dynamic reconfiguration
following a stroke. Second, the dynamic behaviours of the
brain functional network exhibit highly significant alteration
between subgroups, i.e., reconfiguration pattern differs be-
tween patients with distinct degrees of clinical symptoms.

Il. MATERIALS AND METHODS
A. Participants

The stroke samples examined in this study were from fifteen
ischemic stroke patients admitted to the 1st affiliated hospital
of Shantou University Medical College (SUMC, mean age
63.8 years with a standard deviation of 11.68 years, 4 male/11
females, mean day of MRI scan post-stroke is 23.06 with
a standard deviation of 4.32). The patients were recruited
from a greater study approved by the medical research ethics
committees of the named hospitals, and all participants signed
informed consent. All participants were right-handed, had nor-
mal vision, and had no hearing deficits. The patient inclusion
criteria and the details of recruited 15 patients can be seen in
the Supplementary Material (a-1 and a-2).

Patients with National Institutes of Health Stroke Scale
(NIHSS)>5 were assigned to a severe subgroup; otherwise,
they were assigned to the mild subgroup [20]. In addition, fif-
teen age-matched healthy samples from our previous research
served as control groups [21] (7 male/8 female, mean age 68.6
years with a standard deviation of 6.4 years). The demographic
characteristics of all participants and the clinical features of

stroke patients can be seen in the Supplementary Material (a-
3).

B. MRI Acquisition

Acquisition of MRI data was all performed on a Discovery
standard 3.0 T scanner using an 8-channel head coil at the MRI
center of SUMC. The high-resolution T1 anatomical images
were acquired with a multi-planar rapidly acquired gradient
echo sequence with 1 mm isotropic voxels, a 256 x 256 matrix
size, and a 9-degree flip angle (129 slices, repetition time (TR)
= 2250 ms, Time of echo (TE) = 4.52 ms). With the TI,
the lesion profile of all patients has been created as a lesion
overlap map (the details and corresponding lesion map can be
seen in the Supplementary Material b-1).

Resting-state functional MRI was collected after the
anatomical scan using single-shot gradient-echo EPI sequence:
TR = 2,000 ms; TE = 30 ms; flip angle = 90; field of view
= 240 x 240 mm?; matrix size = 64 x 64; number of slices =
25: and voxel size = 3.43 x 3.43 x 5.0 mm?® with no gap; and
210 volumes acquired in 7 min.

C. FMRI Data Preprocessing and Head Motion Control

The functional MRI scans were processed using a cus-
tomized pre-processing pipeline in the CONN functional
connectivity toolbox [22] in conjunction with the Statistical
Parametric Mapping software package (SPM12) [23].

For all subjects, the first 10 functional volumes were re-
moved to obtain a steady blood oxygenation level-dependent
activity signal. The remaining 200 images were corrected for
slice timing and head motion, and they were normalized to
Montreal Neurologic Institute (MNI) space. The non-smoothed
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Fig. 2. Flowchart of the multilayer dynamics analysis framework.

functional images were fed into the default denoising pipeline
for the elimination of confounding effects and temporal band-
pass filtering. Preprocessing and denoising details and their
quality assessments are available in the supplementary Mate-
rial (b-2).

The head motion effect was controlled in functional con-
nectivity analysis by calculating the individual framewise dis-
placements (FD). Participants with a maximum displacement
exceeding 1.5 mm and a maximum rotation above 1.5 degrees
were excluded. In practice, no subjects exceeded these criteria
so non were excluded. In addition, 24 motion parameters,
calculated from the six original motion parameters, were
regressed out as nuisance covariates. Finally, there was no
significant group difference in mean FD when comparing the
15 stroke patients with the 15 healthy controls. Detailed results
are available in the Supplemental Material (b-3).

D. Functional Connectivity Estimation

Functional connectivity is estimated by calculating the
Person’s correlation coefficient between pairwise time series
of spatially distinct brain regions. These regions are gener-
ated from anatomically or functionally parcelled brains, also
known as brain parcels [16]. In this study, a functional brain
parcellation provided by CONN was used to investigate the

changing network configuration due to stroke lesions. This
parcellation comprises 32 regions of interest (ROIs) which can
cover the whole-brain area and be formed by eight large-scale
networks/systems (details can be seen in Figure 1). Then, for
N ROIs, a N x N functional connectivity matrix A can be
created, where each entry A; is a pairwise Person’s coeffi-
cient between ROIs ¢ and j. To eliminate the bias, Fisher’s
Z-transformation was applied to the functional connectivity
matrices to obtain normally distributed Z-scores, and only the
positive values were retained in the further connectivity anal-
ysis. The traditional static functional connectivity analysis for
stroke patients is also available in the Supplemental Material
(b-4).

E. Static Modularity

Static modularity is a theoretical graph metric measuring
the segregation between distinct brain function systems [24].
As suggested in previous studies [10], [25], Newman’s method
was implemented in the Brain Connectivity Toolbox for the
static modularity calculation [26]. Modularity was calculated
at edge densities ranging from 4 to 20% with the symmetric
treatment of negative weights consistent with reference [10],
[25], [27]. The modularity calculated at each edge density was
tested to see if there were significant differences between sub-
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groups (mild vs. severe, severe vs. control, mild vs. control),
and the average values across densities with a significant group
effect were used as the final static modularity.

F. Multilayer Modularity

Dynamic functional connectivity estimation. Multilayer
modularity calculation for dynamics analysis is based on
dynamic functional network connectivity (dFNC) estimation.
In this context, the common sliding window scheme was
first employed to obtain temporal slices (Figure 2A). At each
time point, a tapered window was used, which was obtained
by convolving a rectangle (equal to the window size) with
a Gaussian (o = 3). While the optimal choice of window
width setting in the sliding window scheme is still under
debate, prior studies have provided evidence that the number
of communities fluctuates narrowly with a window width of
100s (50 TR) [4], [28]. In this paper, the window width was
opted for 50 TR and a step size of 1 TR [29](The alternative
option with a window width of 20 TR has been shown in Sup-
plemental Material (c-2)). For each sliding window, Fisher’s
z-transform of Pearson’s correlation coefficient between all
pairs of segmented timeseries was computed to estimate the
dynamic functional connectivity.

Multilayer network detection. using the estimated dFNC,
a multilayer network can be detected as follows: First, the
dynamical functional connectivity matrices of stroke patients
and healthy controls were concatenated along the diagonal to
produce their initial community profile (obtaining a matrix
with 4,768 x 4,768, where 4,768 = 149 x 32, being the
number of sliding windows and the size of each window
respectively). Then, a Louvain-like greedy community detec-
tion algorithm was used for dynamic community detection.
This algorithm optimizes the multilayer modularity partition
by maximizing the modularity quality function [30], which is
defined as:

1 kik;
Qu = Z Z |:(Aijl — 7y 2lm]l> O + §ijwjlr:| 8 (gits 9jr )

!
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where

o A;j is the weight of the edges between nodes 7 and j at
layer [;

e kj; is the weighted degree of node j in layer [, that is
the sum of the weights of the edges connected to node j
in layer [;

o my is the total nodal weighted degrees in layer [;

o =15 (kjr+cj) is the sum of the weights of the
dynamic functional connectivity matrix;

o Cjr = Zl wjr; and wj,q is the edge strength between node
7 in layer [ and node j in layer r.

e 0;; denotes the Kronecker J-function, where d;; = 1 if
1 = 7, otherwise 0;

e gi and g;, represent the community node ¢ is assigned
to in layer /[ and node j in layer r respectively;

e 6(gi1,95r) =1 if g = g;1, otherwise 0;

o The parameters v and w are the intra-layer and inter-layer
coupling parameters, controlling the number of modules
detected in layers and across layers.

The final values of the two hyperparameters were determined
with the grid-search method, the details of which can be seen
in the Supplementary Material (c-1).

The final optimization associates the functional connectivity
modularity to each sliding window. Hence, for the 149 sliding
windows of each subject obtained in the multilayer resolution,
there would be 149 community assignment (CA) vectors; the
length of each CA vector is 32, corresponding to the number
of predefined ROIs. After reconstruction, a multilayer network
with a complex and rich community modularity structure
spanning the time-varying layers can be obtained.

Multilayer dynamics analysis. For each participant from
the two different subgroups, three measures: recruitment, in-
tegration and flexibility, were calculated to characterize the
multilayer network dynamics based on the detected dynamic
community structure.

Recruitment and integration quantify the dynamic functional
interaction within and between brain functional systems. Pre-
cisely, recruitment is measured by the fraction of layers in
which ROIs from the same functional system are assigned
to the same community [10]. The recruitment of a given
predefined functional system S is defined as:

1
Rs=—3 > Py @

s €S jes
where ng is the number of ROIs belonging to the system S
P;; is the allegiance matrix of the multilayer networks, which
. T . o
is defined as P;; = %thl al; with af; = 1 if in layer t
nodes ¢ and j are assigned to the same community, and O
otherwise. Similar to recruitment, the integration of a given
predefined functional system .S is defined as:

A Dy 3)

The system of interest is highly functionally integrated when
its functional regions are frequently assigned to the same
community as other regions. Therefore, to quantify this, an
integration coefficient can also be defined between different
functional systems [31]. The integration between functional
system Sy and S is calculated as:

! > > Py (4)

n n
Skt ies, jes,

ISkSl =

The higher the between-system integration, the stronger the
functional coordination between systems. This study inves-
tigated both within-system and between-system integration
alterations caused by stroke lesions.

Flexibility characterizes the community stability of a system
in multilayer resolution [11]. The flexibility of a system
corresponds to the average number of times that its brain
regions change module allegiance. The system S’s flexibility
is defined as:

1 T
Fszmzzbi, 5

ies t=1
where ng is the number of regions belonging to the system .S,
T is the multilayer resolution, and b; = 1 if in the next layer
t + 1 the node i is assigned to a different community.
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between different subgroups; horizontal lines indicate group means, and asterisks represent significant differences at p < 0.05 Bonferroni

corrected, ns denotes no significance.

Noting that random effects in the Louvain-like greedy
community detection algorithm exist in multilayer community
detection, the multilayer modularity optimization was run 100
times. The mean of the corresponding dynamic measures from
the 100 repetitions served as their final values. Besides, a
permutation approach [14] was used for the normalization
of these dynamic measures. Specifically, a null distribution
was created from 1000 randomly permuted multilayer func-
tion connectivity matrices. The recruitment, integration, and
flexibility are then divided by the mean of the corresponding
null distribution to obtain normalized values.

G. Statistical Analysis

A 2-sample t-test (control covariates: age, sex, and FD ) was
performed on the static functional connectivity and modularity
to determine if there were functional network changes between
patient groups and controls. In addition, a three-level one-
way ANOVA (level of significance p < 0.05) was performed
to investigate if there were static modularity differences in
healthy controls and mild and severe patients. In case of
significant ANOVA results, post hoc t-tests (mild patients,
severe patients and controls) were performed. Correction for
multiple comparisons was always applied whenever testing
more than one hypothesis simultaneously (false discovery rate
(FDR) correction p < 0.05).

[1l. RESULTS
A. Whole Brain Static Modularity Alteration

Figure 3 shows the static modularity for each group and
each density. As expected, the edge density also has significant
effects on the whole brain functional network modularity
(F(16) = 28.63, p < 0.0001). Comparing the different
edge densities, at only 5 densities, was the modularity signif-
icantly different between mild, severe, and control subgroups
(Po.oa = 0.011, po.os = 0.009, po.os = 0.014, po.or =

A. Recruitment

0.05

P-value =

P-value

P-value

Fig. 4. Brain regions exhibiting significant differences in ANOVA results
for A. recruitment, B. integration, and C. flexibility.

0.008, pg.os = 0.014). In general, the stroke patients had
much lower functional network modularity (F'(2) = 47.25,
p < 0.0001), suggesting that the brain tends to have a less
segregated functional network after stroke. The final static
modularity also indicates that both the mild patients (p = 0.02,
Bonferroni corrected) and the severe patients (p = 0.04,
Bonferroni corrected) have lower network segregation than
healthy controls. However, the significant effect on the static
modularity was not detectable between the groups of mild and
severe patients.
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Fig. 5. Results of post-hoc tests to examine the differences in recruitment between groups with distinct clinical symptoms.

B. Significant Brain Region Reconfiguration

Static modularity reflects the average state that functional
brain networks exhibit. However, the modular organization
is not static but instead fluctuates constantly in response to
the brain’s functional demands, especially demands that have
dramatic changes, such as when facing brain deficits. Three
measures were produced to characterize this dynamic process
based on the detected multilayer network. Figure 4 shows
the brain regions with significant differences in these mea-
surements using three-level one-way ANOVA analysis results.
According to the network parcellation, those brain regions with
significant differences in recruitment are distributed across
four networks: SMN, SAN, VIS, and LN (Figure 4A). The
brain regions with significant differences in integration mainly
reside in SAN and VIS (Figure 4B). Brain regions with
significant differences in flexibility are distributed primarily
in network SAN and CE (Figure 4C).

C. Trends in Network Reconfiguration Based on Stroke
Severity

The brain regions which showed significantly different
measurements between groups indicate that the brain networks
reconfigure themselves after stroke. Next, we examined how
dynamic reconfiguration is exhibited in brain functional net-
works, and whether these configuration patterns differ between
patients with different stroke severity.

First, the between-group differences in recruitment are ex-
amined. The mild and severe patients show that most brain
regions decline in recruitment compared to healthy controls.
Severe patients exhibit more regions with declined recruit-
ment compared to healthy controls than do the mild patients,
implying that the number of regions with decreased recruit-
ment increases as stroke severity grows. This inference was
reinforced when solely comparing mild patients and severe
patients, where the severe patients showed lower recruitment in
ACC (t = —2.225, p = 0.044), left anterior insula (t = 2.664,

p = 0.019) and right SMG (¢t = —2.546, p = 0.024) than
the mild patients. Figure 5 illustrates the distribution of these
regions with significant differences between subgroups. As
nodal-level recruitment significantly differs, so the recruitment
in large-scale systems exhibits differences (F = 15.29 p <
0.0001). Post hoc comparison shows the mild patients had
lower recruitment in VIS (¢t = —4.973, p < 0.0001) and LN
(t = —2.342, p = 0.030), and the severe patients in SMN,
SAN and LN compared to healthy controls (FDR corrected
p < 0.05).

Next, the group difference in integration between controls,
mild patients, and severe patients was tested with the results
shown in Figure 6. The post hoc comparison indicates that
severe patients have higher integration in the anterior insula
(t = 2.762, p = 0.011), right and left SMG (left: ¢t = 2.886,
p = 0.009. right: ¢ = 2.869, p = 0.009), and lateral visual
area (t = 2.618, p = 0.016) compared to controls. Neither
mild patients and controls nor mild patients and severe patients
differed in this aspect. In terms of integration between brain
functional networks, the integration between DMN and CE
(F = 4.54, p = 0.019), SMN and CE (F = 3.66, p = 0.039),
VIS and LN (F' = 4.18, p = 0.026), DAN and CE (F = 4.71,
p = 0.017), FPN and CE (F = 3.45, p = 0.04) was
significantly altered. Post hoc t-tests, contrasting mild patients
and healthy controls, revealed a stroke-induced decrease in
integration between DMN and CE (t = —2.124, p = 0.036)
but an increase between VIS and LN (¢ = 2.208, p = 0.040),
DAN and CE (¢t = 2.757, p = 0.013). In contrast, severe
patients comprised a decrease in integration between DMN
and CE (¢t = —2.653, p = 0.015), FPN and CE (¢ = —2.899,
p = 0.008), but an increase between SMN and CE (¢t = 3.345,
p = 0.003), VIS and LN (¢ = 2.213, p = 0.037), and
DAN and CE (t = 2.218, p = 0.037) when compared to
healthy controls (p < 0.05, FDR-corrected). Mild and severe
patients did not feature significant differences in between-
network integration after correction for multiple comparisons.
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Fig. 6. Post-hoc test results examining the differences in the (A) integration and (B) flexibility between groups with distinct clinical symptoms.

Figure 6A. illustrates the details on the integration of altered
network pairs.

Lastly, we investigated the between-group difference in
flexibility. While a significant effect in flexibility was not
detected when contrasting severe patients and healthy controls,
mild patients featured significantly different flexibility in brain
regions and functional networks compared to both controls and
severe patients. In particular, the majority of the significantly
altered areas resided in the salience and cerebellum functional
domains. For example, mild patients have lower flexibility in
the left RPFC than both other groups (to controls: ¢ = —4.078,
p = 0.0006; to severe patients: ¢ = —2.648, p = 0.020). The
lower flexibility in the mild patients was also exhibited in
the anterior cerebellum when contrasting with controls (t =
—2.433, p = 0.025) and in the right insula when contrasting
with severe patients (t = —2.039, p = 0.038). A similar trend
between groups is also observed in terms of functional network
flexibility. Mild patients not only featured less flexibility in
SAN than severe patients (t = —2.410, p = 0.032) but also
lower flexibility in SAN (t = —2.842, p = 0.010) and CE
(t = —2.714, p = 0.035) than controls. Notably, flexibility in
SAN did not go down further as severity increased. When
compared to mild patients, increased SAN flexibility was
observed in severe patients. The box plot in Figure 6B shows
the two networks (SAN and CE) with significantly different
flexibility. Severe patients and controls did not differ in this
regard.

Collectively, patients, no matter which level of severity,
show remarkably consistent reduced recruitment compared to
healthy controls. This reduction seems to exhibit continuity, as
lower recruitment was observed in severe patients compared to
mild patients. On top of that, the post-stroke dynamic recon-
figuration can be represented by pairwise network integration

instead of within-network integration. The mild and severe
patients shared increased DMN-CE and decreased VIS-LN
and DAN-CE integration. Regarding flexibility, this dynamic
network measure has a significant group difference in SAN
and CE. Of note is that SAN flexibility displays a U-shaped
curve as severity rises, which exhibits a converse trend against
SAN recruitment.

IV. DISCUSSION

As presented, we investigated alterations in the dynamic
modules of human brain functional networks across stroke
patients with different levels of severity. Specifically, the
dynamic functional network changes were modelled across
three groups of patients: healthy, mild stroke, and severe
stroke, by using a multilayer network method. According to
the inherent dynamics of the brain in a resting state, the post-
stroke multilayer networks were constructed, from which three
measures (recruitment, integration, flexibility) were derived.
These three dynamic network measures characterize the brain
network reconfiguration after a stroke from different points
of view. Given the trends observed in these measures across
the three states of patients, we can learn that mild and severe
patients exhibit different reconfiguration patterns (a summary
of the reconfiguration patterns can be seen in Figure 7). Mild
stroke patients can be summarized as having a reduction in
recruitment in VIS and LN, decreased DMN-CE and increased
VIS-LN and DAN-CE integration, and declined SAN and CE
flexibility. In contrast, severe patients were characterized by
reduced recruitment in SMN, SAN, and LN. In addition to
the same integration trend as in mild patients, severe patients
were also observed to additionally have raised SMN-CE and
lower FPN-CE integration. To the best of our knowledge, this
is the first study applying a multilayer network model and
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Fig. 7. Summary of the reconfiguration patterns of stroke patients with different degrees of symptoms. (A) Mild. (B) Severe.

evaluating multiple dynamic measures to explore the dynamic
reconfiguration of the functional brain network following a
stroke. We believe these findings could underpin post-stroke
functional plasticity and reorganization and may enable new
insight into rehabilitation strategies to promote recovery of
function.

A. Whole Brain Static Modularity Across Stroke Patients
with Different Levels of Severity

Using an edge-density approach, lower modularity in post-
stroke patients than in healthy controls was observed. This
result was consistent with previous studies providing evidence
that modularity in resting-state post-stroke patients is re-
duced [11], [25]. While a significant group effect in modularity
was not observed between the severe and mild patients, much
lower modularity was detectable in the mild patients than in
the severe patients compared to controls. Despite there being
no direct evidence proving that the relationship between modu-
larity and post-stroke severity fits a U-shape of the curve, such
a plausible relationship has been depicted in previous dynamic
functional connectivity analyses for acute stroke patients. For
example, mild patients prefer to stay in a densely connected
brain state characterized by a lower level of modularity than
severe patients [12]. This improvement of rich modularity in
patients with high severity is not exclusive to stroke disease but
can also be observed in Parkinson’s disease [32] and traumatic
brain injury [33]. However, post-stroke recovery studies also
present a linear relationship between modularity and behav-
iors: modularity continually increases as the severity of clinical
symptoms alleviates, until it reaches a normal level. Duncan et
al. [9] reported that aphasia patients with improved narrative
production following therapy had increased modularity in
resting state networks. A recent study of large-scale stroke
patients by Siegel et al. [25] demonstrated that two weeks after
stroke, patients’ functional deficits had been alleviated, and
in parallel with this function recovery, the modular structure
reemerged and was enriched. Theses distinctly different trends
in modularity can be explained by differences between the
between-person and the within-person effects. Within-person

effects emphasize the trend over a certain period for a specific
group, while between-person effects fuse multiple differences
that the groups exhibit [34].

On the other hand, the reduction of static modularity can
also be interpreted as decreased segregation between func-
tional domains or networks. The human brain can be parcelled
into various functional domains. Functional segregation refers
to the independent processing ability of the locally isolated
domain to define specific brain functions (when it comes
to cooperation between the distributed domains, it refers
to functional integration). Although the relationship between
modularity and segregation is unclear, higher modularity gen-
erally suggests greater segregation [12], [35]. Hence, from the
reduced modularity observed in our results, lower segregation
in stroke patients can be inferred. This finding is consistent
with previous studies that interpreted the lower post-stroke
modularity as a result of decreasing network segregation [9],
[24], [25]. Results from dynamic functional connectivity anal-
ysis also implied that severe patients prefer a state featuring
a higher level of segregation between motor domains [12],
[20]. Nevertheless, inferring domain segregation trends from
static modularity should be taken with caution. When we
link modularity and segregation within patient subgroups, a
non-linear relationship might exist. There was a hypothesis
related to post-stroke aphasia posited by Duncan et al. [9]
that modularity and segregation might follow an inverse U-
shaped curve. This is contrary to the inference that severe
patients have higher segregation than mild patients because of
the lower modularity.

Collectively, whole brain modularity is significantly reduced
after stroke. This alteration fits a U-shape curve as severity
increases, but between-group effects dilute this result. Besides,
modularity should not be used as a biomarker of functional
segregation. Post-stroke alteration of functional segregation
should be supported by extra observations.
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B. Functional Segregation and Integration from
Multilayer Dynamic Network Measures

The brain modular organization is not static but instead
fluctuates constantly in response to brain functional demands,
even in a resting state. In light of that fact, it is more
reasonable to conclude post-stroke functional segregation and
integration trends from the dynamic measures than from the
static modularity.

First, there was reduced recruitment within functional net-
works in both mild and severe patients, indicating that the
regions within these networks orchestrate each other less
often after stroke. It suggests that VIS and LN in mild
patients, SMN, SAN and LN in severe patients tend to process
information in an isolated state. Given the bodily functional
deficits related to these functional domains, this isolation
might correlate with the specific severity of clinical symptoms.
Particularly, severe patients were found to have significantly
lower recruitment in SAN than mild patients, suggesting that
patients with higher clinical symptoms have much lower SAN
segregation. The inverse U-shaped curve observed comple-
ments the work of Duncan et al. [25]. This pattern cannot
be seen in the static modularity analysis, as this recruitment
calculation was embedded with temporal information.

Next, regions with significant group differences show an
increasing trend of integration in severe patients. Recall that
the definition of nodal-level integration indicates that these
regions in post-stroke patients tend to interact more with other
modules beyond the predefined function domain. Regarding
the alteration in the integration of specific domains, there
was no significant difference observed. However, the pairwise
integration between functional domains has been significantly
altered. Regardless of patient groups, increased integration be-
tween VIS and LN and between DAN and CE, and decreased
integration between DMN and CE can be observed. The post-
stroke integration changes suggest that the stroke lesions alter
the information transfer between domains instead of within
the domain. Besides, it is worth noting that mild patients show
less integration alteration than severe patients. In addition to
the shared changes with mild patients, integration in severe
patients between FPN and CE was decreased, and between
SMN and CE was increased. This alteration suggests a link
between the interaction between-domain and the level of post-
stroke clinical symptoms. Interestingly, the between-network
interaction alteration follows a specific balancing mechanism:
some pairwise integrations increase while others decrease.

Collectively, stroke groups with different severity levels
express similar dynamic patterns. For either the mild or severe
patients, the recruitment and integration trend suggests a trade-
off between network segregation and integration: segregation
increases between some systems, and integration increases
or decreases between others. Previous studies have shown
that the dynamic measure which has been affected, e.g. by
consciousness or by neurological disorders like temporal lobe
epilepsy [18], misdiagnosis of bipolar disorder [36] showed
an evident recovery trend. As the exact quantitative rela-
tionship between the reduced alteration in integration and
stroke recovery was not calculated, it is possible to conclude

that post-stroke recovery involved integration and recruitment
normalization.

C. Dynamic Functional Network Analysis and Network
Flexibility

Dynamic functional network analysis (DFNC) has recently
become popular when working with resting-state fMRI [37]—
[39]. Given the capacity of DFNC to delineate spontaneous
variation of functional connectivity, a growing number of such
methods have been applied in various scenarios that need
to assess high-level network flexibility, not only stroke [12],
[20], [40]-[43] but also Parkinson’s disease [32], Huntington’s
disease [44], migraine [45] and normal brain ageing [46].
However, the definition of flexibility and the conditions for
it may differ across studies. For example, Bonkhoff et al. [12]
defined the transition of transient states as network flexibility
and reported that the patient groups with motor impairment
prefer to shift states when compared to controls. This con-
clusion was generalized to the broader stroke population in
their subsequent work [20]. Besides, the temporal variation
of functional connectivity can be seen as a metric measuring
network flexibility fluctuation. Chen et al. [41] demonstrate
that FC variability is higher in stroke patients than in healthy
controls. A similar increase in temporal variability in the
ipsilesional precentral gyrus at the subacute stage was reported
by Hu et al. [43].

As a measure that is also developed on the time-varying
network in the same way as the flexibility described above,
the flexibility used in this study reflects a network’s allegiance
to a predefined functional domain. Hence, network flexibil-
ity here emphasises the temporal variations in the network
configuration. The higher the flexibility, the more frequently
the network engages in between network interactions. From
the results, SAN and CE’s flexibility in mild patients was
significantly lower than in controls and severe patients. The
SAN plays a crucial role in identifying the most biologi-
cally and cognitively relevant events for adaptively guiding
attention and behaviour and constitutes a critical interface for
cognitive, homeostatic, motivational, and affective systems.
Besides, the extensive connections with the cerebellum (such
as the basal ganglia and thalamus) are linked to perceptual,
cognitive, and motor processes. The lower flexibility found
in mild patients indicates that the role of two networks in
brain communication is decreasing, which explains the post-
stroke cognitive deficit [47]. As there are no networks with
significantly different flexibility in severe patients, we can
make no conclusions regarding the flexibility level being
dependent on the severity level.

Nevertheless, network flexibility has been found to be asso-
ciated with verbal creativity [48], attention [49], fatigue [50],
depression [19], and high-order cognitive functions [51]. These
studies confirm the neurobiological basis of network flexibility
during adaptive brain processes. Hence, it is natural to specu-
late that flexibility is positively correlated with stroke severity.
This alleged relationship supports a post-stroke neuron bypass
theory [52], i.e., through network reorganization, the neurons
bypass the brain regions with deficits and attempt to form new
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connectivity. These newly forming pathways drive the switch-
ing rate to fluctuate wildly to an optimal connectivity pattern.
However, if the flexibility could foresee the exacerbation or
improvement of brain function after a stroke still needs to be
verified. [53]. In the future, it is worth trying to acquire long-
term post-stroke behavioural markers to investigate the link
between flexibility and brain function.

V. CONCLUSION

In this study, a multi-layer network analysis-based method
was proposed to study the dynamic changes in the brain of
stroke patients with different severity levels. The indistinguish-
able network reconstruction pattern with severity dependencies
demonstrates the potential of this dynamic method in capturing
key features of clinical symptoms of a stroke. Patients with
severe deficiencies tend to reduce recruitment and increase
integration between networks. However, patients with mild
defects have lower network flexibility. These observations
provide clear evidence for brain network reconstruction after
stroke, which static modular methods cannot do. Therefore,
this study expands the resting state fMRI-based functional
connectivity analysis methods applied for post-stroke patients.
It is worth noting that the degree of functional impairment
after stroke seems to be related to differences in dynamic net-
work reorganization patterns among stroke patients. In clinical
practice, these findings could help observe the transition from
a severe to a mild state during stroke patients’ rehabilitation
process. Moreover, the proposed dynamic method could assist
clinicians in performing accurate prognosis assessments or
could be used as a brain status monitoring method while
conducting the therapeutic intervention.
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